Advertisement

Molecular Biology

, Volume 53, Issue 4, pp 560–570 | Cite as

Structural and Functional Organization of the Mitochondrial DNA Control Region in the Woolly Mammoth (Mammuthus primigenius)

  • I. V. KornienkoEmail author
  • T. G. Faleeva
  • N. V. Oreshkova
  • S. E. Grigoriev
  • L. V. Grigorieva
  • Yu. A. Putintseva
  • K. V. Krutovsky
GENOMICS. TRANSCRIPTOMICS
  • 1 Downloads

Abstract

The woolly mammoth mitochondrial genome (including the Malolyakhovsky mammoth) has been previously sequenced, followed by the annotation of all its genes (MF770243). In this study, based on the Malolyakhovsky mammoth, we describe for the first time the sites of functional significance in the control region of the woolly mammoth mitogenome.

Keywords:

ancient DNA mitochondrial DNA control region woolly mammoth paleogenetics 

Notes

FUNDING

The study was carried out as part of the state contract of the Southern Scientific Center of the Russian Academy of Sciences, grant no. 01201363186.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Krause J., Dear P.H., Pollack J.L., Slatkin M., Spriggs H., Barnes I., Lister A.M., Ebersberger I., Pääbo S., Hofreiter M. 2006. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature. 439, 724‒727.CrossRefGoogle Scholar
  2. 2.
    Poinar H.N., Schwarz C., Qi J., Shapiro B., Macphee R.D., Buigues B., Tikhonov A., Huson D.H., Tomsho L.P., Auch A., Rampp M., Miller W., Schuster S.C. 2006. Metagenomics to paleogenomics: Large-scale sequencing of mammoth DNA. Science. 311, 392‒394.CrossRefGoogle Scholar
  3. 3.
    Rogaev E.I., Moliaka Y.K., Malyarchuk B.A., Kondrashov F.A., Derenko M.V., Chumakov I., Grigorenko A.P. 2006. Complete mitochondrial genome and phylogeny of Pleistocene Mammoth Mammuthus primigenius. PLoS Biol. 4, e73.4a.Google Scholar
  4. 4.
    Gilbert M.T., Drautz D.I., Lesk A.M., Ho S.Y., Qi J., Ratan A., Hsu C.H., Sher A., Dalén L., Götherström A., Tomsho L.P., Rendulic S., Packard M., Campos P.F., Kuznetsova T.V., et al. 2008. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. Proc. Natl. Acad. Sci. U. S. A. 105, 8327‒8332.CrossRefGoogle Scholar
  5. 5.
    Enk J., Devault A., Debruyne R., King C.E., Treangen T., O’Rourke D., Salzberg S.L., Fisher D., MacPhee R., Poinar H. 2011. Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths. Genome Biol. 12, R51.CrossRefGoogle Scholar
  6. 6.
    Chang D., Knapp M., Enk J., Lippold S., Kircher M., Lister A., MacPhee R.D., Widga C., Czechowski P., Sommer R., Hodges E., Stümpel N., Barnes I., Dalén L., Derevianko A., et al. 2017. The evolutionary and phylogeographic history of woolly mammoths: A comprehensive mitogenomic analysis. Sci. Rep. 27, 44585.CrossRefGoogle Scholar
  7. 7.
    Kornienko I.V., Faleeva T.G., Oreshkova N.V., Gri-goriev S.E., Grigoreva L.V., Simonov E.P., Kolesnikova A.I., Putintseva Yu.A., Krutovsky K.V. 2018. Complete mitochondrial genome of a woolly mammoth (Mammuthus primigenius) from Maly Lyakhovsky Island (New Siberian Islands, Russia and its phylogenetic assessment. Mitochondrial DNA B. 3, 596‒598.CrossRefGoogle Scholar
  8. 8.
    Grigoriev S.E., Fisher D.C., Obada T., Shirley E.A., Rountrey A.N., Savvinov G.N., Garmaeva D.K., Novgorodov G.P., Cheprasov M.Y., Vasilev S.E. 2017. A woolly mammoth (Mammuthus primigenius) carcass from Maly Lyakhovsky Island (New Siberian Islands, Russian Federation). Quat. Int. 445, 89‒103.CrossRefGoogle Scholar
  9. 9.
    PrepFiler User Guide (2008). Applied Biosystems.Google Scholar
  10. 10.
    Promega Corporation. 2006. Tissue and Hair Extraction Kit Protocol (for Use with DNA IQ). Madison, WI, Rev. 5.Google Scholar
  11. 11.
    Promega Corporation. 2006. DNA IQ System–Small Sample Casework Protocol. Technical Bulletin. Madison, WI, Rev. 4.Google Scholar
  12. 12.
    Kornienko I.V., Kharlamov S.G. 2012. Metody issledovaniya DNK cheloveka. Vydelenie DNK i ee kolichestvennaya otsenka v aspekte sudebno-meditsinskogo issledovaniya veshchestvennykh dokazatel’stv biologicheskogo proiskhozhdeniya: Uchebno-metodicheskoe posobie (Methods for Human DNA Analysis. DNA Isolation and Quantification in the Context of Forensic Examination of Material Evidences of Biological Origin: A Tutorial). Rostov-on-Don: Yuzhn. Fed. Univ.Google Scholar
  13. 13.
    Kocher T.D., Thomas W.K., Meyer A., Edwards S.V., Pääbo S., Villablanca F.X., Wilson A.C. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. U. S. A. 86, 6196‒6200.CrossRefGoogle Scholar
  14. 14.
    Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23, 2947–2948.CrossRefGoogle Scholar
  15. 15.
    Okonechnikov K., Golosova O., Fursov M., the UGENE team. 2012. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 28, 1166–1167.CrossRefGoogle Scholar
  16. 16.
    Sbisa E., Tanzariello F., Reyes A., Pesole G., Saccone C. 1997. Mammalian mitochondrial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications. Gene. 205, 125‒140.CrossRefGoogle Scholar
  17. 17.
    Reuter J.S., Mathews D.H. 2010. RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinform. 11, 129‒137.CrossRefGoogle Scholar
  18. 18.
    Kornienko I.V., Bren’ I.V., Voinova N.V., Gus’kov E.P. 2004. Structural organization of vertebrate mitochondrial DNA. Usp. Sovrem. Biol. 124 (1), 17‒27.Google Scholar
  19. 19.
    Finch T.M., Zhao N., Korkin D., Frederick K.H., Eggert L.S. 2014. Evidence of positive selection in mitochondrial complexes I and V of the African elephant. PLoS One. 9, e92587.CrossRefGoogle Scholar
  20. 20.
    Brandt A.L., Ishida Y., Georgiadis N.J., Roca A.L. 2012. Forest elephant mitochondrial genomes reveal that elephantid diversification in Africa tracked climate transitions. Mol. Ecol. 21, 1175‒1189.CrossRefGoogle Scholar
  21. 21.
    Skelly P.J., Clark-Walker G.D. 1991. Polymorphisms in tandemly repeated sequences of Saccharomyces cerevisiae mitochondrial DNA. J. Mol. Evol. 32, 396‒404.CrossRefGoogle Scholar
  22. 22.
    Dufresne C., Mignotte F., Gueride M. 1996. The presence of tandem repeats and the initiation of replication in rabbit mitochondrial DNA. Eur. J. Biochem. 235, 593‒600.CrossRefGoogle Scholar
  23. 23.
    Lunt D.H., Whipple L.E., Hyman B.C. 1998. Mitochondrial DNA variable number tandem repeats (VNTRs): Utility and problems in molecular ecology. Mol. Ecol. 7, 1441‒1455.CrossRefGoogle Scholar
  24. 24.
    Hauf J., Waddell P.J., Chalwatzis N., Joger U., Zimmermann F.K. 2000. The complete mitochondrial genome sequence of the African elephant (Loxodonta africana), phylogenetic relationships of Proboscidea to other mammals and D-loop heteroplasmy. Zoology. 102, 184‒195.Google Scholar
  25. 25.
    Arnason U., Adegoke J.A., Gullberg A., Harley E.H., Janke A., Kullberg M. 2008. Mitogenomic relationships of placental mammals and molecular estimates of their divergences. Gene. 421, 37‒51.CrossRefGoogle Scholar
  26. 26.
    Arnason U., Adegoke, J.A., Bodin K., Born E.W., Esa Y.B., Gullberg A., Nilsson M., Short R.V., Xu X., Janke A. 2002. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc. Natl. Acad. Sci. U. S. A. 99, 8151‒8156.CrossRefGoogle Scholar
  27. 27.
    Murata Y., Nikaido M., Sasaki T., Cao Y., Fukumoto Y., Hasegawa M., Okada N. 2003. Afrotherian phylogeny as inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 28, 253‒260.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • I. V. Kornienko
    • 1
    • 2
    Email author
  • T. G. Faleeva
    • 2
    • 3
  • N. V. Oreshkova
    • 4
    • 5
    • 6
  • S. E. Grigoriev
    • 7
  • L. V. Grigorieva
    • 8
  • Yu. A. Putintseva
    • 5
  • K. V. Krutovsky
    • 5
    • 9
    • 10
    • 11
  1. 1.Southern Scientific Centre, Russian Academy of SciencesRostov-on-DonRussia
  2. 2.Ivanovsky Academy of Biology and Biotechnology, Southern Federal UniversityRostov-on-DonRussia
  3. 3.Branch No. 2 of the 111th Main State Center of Medical Forensic and Criminalistic Examinations, Ministry of Defense of the Russian FederationRostov-on-DonRussia
  4. 4.Sukachev Institute of Forest, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  5. 5.Genome Research and Education Center, Siberian Federal UniversityKrasnoyarskRussia
  6. 6.Laboratory of Genomic Research and Biotechnology, Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  7. 7.Lazarev Mammoth Museum, Institute of Applied Ecology of the North, North-Eastern Federal UniversityYakutskRussia
  8. 8.International Common Use Center Molecular Paleontology, North-Eastern Federal UniversityYakutskRussia
  9. 9.Department of Forest Genetics and Forest Tree Breeding, Georg-August University of GöttingenGöttingenGermany
  10. 10.Vavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
  11. 11.Department of Ecosystem Science and Management, Texas A&M UniversityCollege StationUnited States

Personalised recommendations