Molecular Biology

, Volume 53, Issue 4, pp 501–512 | Cite as

Elongation Factor P: New Mechanisms of Function and an Evolutionary Diversity of Translation Regulation

  • A. A. Golubev
  • Sh. Z. Validov
  • K. S. Usachev
  • M. M. YusupovEmail author


The protein synthesis in cells occurs in ribosomes, with the involvement of protein translational factors. One of these translational factors is the elongation factor P (EF-P). EF-P is a three-domain protein that binds between the P and E sites of the ribosome, near the P-tRNA, the peptidyl transferase center, and E-site codon of the mRNA. The majority of studies showed that the EF-P helps the ribosome to synthesize stalling amino acid motifs, such as polyprolines. In the first part of this review, we inspect the general evolutionary variety of the EF-P in different organisms, the problems of the regulation provided by the EF-P, and its role in the sustainability of the protein balance in the cell in different physiological states. Although the functions of the EF-P have been well studied, there are still some problems that remain to be solved. The data from recent studies contradict the previous theories. Consequently, in the second part, we discuss the recent data that suggest the involvement of the EF-P in each translocation event, not only in those related to polyproline synthesis. This activity contradicts some aspects of the known pathway of the removal of the E-tRNA during the translocation event. In addition, in the third part of this review, we tried to partly shift the interest from the antistalling activity of domain I of the EF-P to the action of domain III, the functions of which has not been closely studied. We expand on the idea about the involvement of domain III of the EF-P in preventing the frameshift and debate the EF-P’s evolutionary history.


ribosome EF-P translation 



This study was supported by the Russian Science Foundation (project no. 17-74-20009).


Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Rajkovic A., Ibba M. 2017. Elongation factor P and the control of translation elongation. Annu. Rev. Microbiol. 8 (71), 117–131.CrossRefGoogle Scholar
  2. 2.
    Rossi D., Kuroshu R., Zanelli C.F., Valentini S.R. 2014. eIF5A and EF-P: Two unique translation factors are now traveling the same road. Wiley Interdisc. Rev. RNA. 5 (2), 209–222.CrossRefGoogle Scholar
  3. 3.
    Glick B.R., Ganoza M.C. 1975. Identification of a soluble protein that stimulates peptide bond synthesis. Proc. Natl. Acad. Sci. U. S. A. 72, 4257–4260.CrossRefGoogle Scholar
  4. 4.
    Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. 1988. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 55 (3), 447–458.CrossRefGoogle Scholar
  5. 5.
    Hanawa-Suetsugu K., Sekine S., Sakai H., Hori-Takemoto C., Terada T., Unzai S., Tame J.R., Kuramitsu S., Shirouzu M., Yokoyama S. 2004. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc. Natl. Acad. Sci. U. S. A. 101, 9595–9600.CrossRefGoogle Scholar
  6. 6.
    Choi S., Choe J. 2011. Crystal structure of elongation factor P from Pseudomonas aeruginosa at 1.75 Å resolution. Proteins. 79, 1688–1693.CrossRefGoogle Scholar
  7. 7.
    Doerfel L.K., Wohlgemuth I., Kothe C., Peske F., Urlaub H., Rodnina M.V. 2012. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science. 339, 85–88.CrossRefGoogle Scholar
  8. 8.
    Peil L., Starosta A.L., Lassak J., Atkinson G.C., Virumae K., Spitzer M., Tenson T., Jung K., Remme J., Wilson D.N. 2013. Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proc. Natl. Acad. Sci. U. S. A. 110, 15265–15270.CrossRefGoogle Scholar
  9. 9.
    Blaha G., Stanley R.E., Steitz T.A. 2009. Formation of the first peptide bond: The structure of EF-P bound to the 70S ribosome. Science. 325 (5943), 966–970.CrossRefGoogle Scholar
  10. 10.
    Katoh T., Wohlgemuth I., Nagano M., Rodnina M.V., Suga H. 2016. Essential structural elements in tRNA(Pro) for EF-P-mediated alleviation of translation stalling. Nat. Commun. 7, 11657.CrossRefGoogle Scholar
  11. 11.
    Bullwinkle T.J., Zou S.B., Rajkovic A., Hersch S.J., Elgamal S., Robinson N., Smil D., Bolshan Y., Navarre W.W., Ibba M. 2013. (R)-β-lysine-modified elongation factor P functions in translation elongation. J. Biol. Chem. 288, 4416–4423.CrossRefGoogle Scholar
  12. 12.
    Rajkovic A., Hummels K.R., Witzky A., Erickson S., Gafken P.R., Whitelegge J.P., Faull K.F., Kearns D.B., Ibba M. 2016. Translation control of swarming proficiency in Bacillus subtilis by 5-amino-pentanolylated elongation factor P. J. Biol. Chem. 291 (21), 10976–10985.CrossRefGoogle Scholar
  13. 13.
    Lassak J., Keilhauer E.C., Furst M., Wuichet K., Godeke J., Starosta A.L., Chen J.M., Sogaard-Andersen L., Rohr J., Wilson D.N., Haussler S., Mann M., Jung K. 2015. Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nat. Chem. Biol. 11, 266–270.CrossRefGoogle Scholar
  14. 14.
    Dever T.E., Gutierrez E., Shin B.S. 2014. The hypusine-containing translation factor eIF5A. Crit. Rev. Biochem. Mol. Biol. 49 (5), 413–425.CrossRefGoogle Scholar
  15. 15.
    Witzky A., Hummels K.R., Tollerson R. 2nd, Rajkovic A.1, Jones L.A., Kearns D.B., Ibba M. 2018. EF-P Posttranslational modification has variable impact on polyproline translation in Bacillus subtilis. MBio. 9 (2), e00306–18.CrossRefGoogle Scholar
  16. 16.
    Hummels K.R., Witzky A., Rajkovic A., Tollerson R., Jones L.A., Ibba M., Kearns D.B. 2017. Carbonyl reduction by YmfI in Bacillus subtilis prevents accumulation of an inhibitory EF-P modification state. Mol. Microbiol. 106 (2), 236–251.CrossRefGoogle Scholar
  17. 17.
    Lassak J., Wilson D.N., Jung K. 2016. Stall no more at polyproline stretches with the translation elongation factors EF-P and IF-5A. Mol. Microbiol. 99 (2), 219–235.CrossRefGoogle Scholar
  18. 18.
    Lassak J., Keilhauer E.C., Furst M., Wuichet K., Godeke J., Starosta A.L., Chen J.M., Sogaard-Andersen L., Rohr J., Wilson D.N., Haussler S., Mann M., Jung K. 2015. Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nat. Chem. Biol. 11 (4), 266–270.CrossRefGoogle Scholar
  19. 19.
    Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2, 2006.0008.Google Scholar
  20. 20.
    Bearson S.M., Bearson B.L., Brunelle B.W., Sharma V.K., Lee I.S. 2011. A mutation in the poxA gene of Salmonella enterica serovar Typhimurium alters protein production, elevates susceptibility to environmental challenges, and decreases swine colonization. Foodborne Pathog. Dis. 8 (6), 725–732.CrossRefGoogle Scholar
  21. 21.
    Navarre W.W., Zou S.B., Roy H., Xie J.L., Savchenko A., Singer A., Edvokimova E., Prost L.R., Kumar R., Ibba M., Fang F.C. 2010. PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol. Cell. 39 (2), 209–221.CrossRefGoogle Scholar
  22. 22.
    Zou S.B., Hersch S.J., Roy H., Wiggers J.B., Leung A.S., Buranyi S., Xie J.L., Dare K., Ibba M., Navarre W.W. 2012. Loss of elongation factor P disrupts bacterial outer membrane integrity. J. Bacteriol. 194 (2), 413–425.CrossRefGoogle Scholar
  23. 23.
    Ohashi Y., Inaoka T., Kasai K., Ito Y., Okamoto S., Satsu H., Tozawa Y., Kawamura F., Ochi K. 2003. Expression profiling of translation-associated genes in sporulating Bacillus subtilis and consequence of sporulation by gene inactivation. Biosci. Biotechnol. Biochem. 67 (10), 2245–2253.CrossRefGoogle Scholar
  24. 24.
    Kearns D.B., Chu F., Rudner R., Losick R. 2004). Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol. Microbiol. 52 (2), 357–369.CrossRefGoogle Scholar
  25. 25.
    Iannino F., Ugalde J.E., Inon de Iannino N. 2012. Brucella abortus efp gene is required for an efficient internalization in HeLa cells. Microb. Pathog. 52 (1), 31–40.CrossRefGoogle Scholar
  26. 26.
    Peng W.T., Banta L.M., Charles T.C., Nester E.W. 2001. The chvH locus of Agrobacterium encodes a homologue of an elongation factor involved in protein synthesis. J. Bacteriol. 183 (1), 36–45.CrossRefGoogle Scholar
  27. 27.
    Sassetti C.M., Boyd D.H., Rubin E.J. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48 (1), 77–84.CrossRefGoogle Scholar
  28. 28.
    Starosta A.L., Lassak J., Peil L., Atkinson G.C., Woolstenhulme C.J., Virumae K., Buskirk A., Tenson T., Remme J., Jung K., Wilson D.N. 2014. A conserved proline triplet in Val-tRNAsynthetase and the origin of elongation factor P. Cell. Rep. 9 (2), 476–483.CrossRefGoogle Scholar
  29. 29.
    Schnier J., Schnier J., Schwelberger H.G., Smit-McBride Z., Kang H.A., Hershey J.W. 1991. Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11 (6), 3105–3114.CrossRefGoogle Scholar
  30. 30.
    Wohl T., Klier H., Ammer H., Lottspeich F., Magdolen V. 1993. The HYP2 gene of Saccharomyces cerevisiae is essential for aerobic growth: Characterization of different isoforms of the hypusine-containing protein Hyp2p and analysis of gene disruption mutants. Mol. Gen. Genet. 241 (3–4), 305–311.Google Scholar
  31. 31.
    Mandal A., Mandal S., Park M.H. 2014. Genome-wide analyses and functional classification of proline repeat-rich proteins: Potential role of eIF5A in eukaryotic evolution. PLoS One. 9 (11), e111800.CrossRefGoogle Scholar
  32. 32.
    Jenkins Z.A., Haag P.G., Johansson H.E. 2001. Human eIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression. Genomics. 71 (1), 101–119.CrossRefGoogle Scholar
  33. 33.
    Karlyshev A.V., Nadarajah S., Abramov V.M. 2013. Draft genome sequence of Lactobacillus jensenii strain MD IIE-70(2). Genome Announc. 1 (6), e01005–13.Google Scholar
  34. 34.
    Rahim R., Ochsner U.A., Olvera C., Graninger M., Messner P., Lam J.S., Soberon-Chavez G. 2001. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol. Microbiol. 40 (3), 708–718.CrossRefGoogle Scholar
  35. 35.
    Singh A., Vaidya B., Tanuku N.R., Pinnaka A.K. 2015. Nitrincola nitratireducens sp. nov. isolated from a haloalkaline crater lake. Syst. Appl. Microbiol. 38 (8), 555–562.CrossRefGoogle Scholar
  36. 36.
    Park S., Jung Y.T., Park J.M., Yoon J.H. 2014. Pseudohongiella acticola sp. nov., a novel gammaproteobacterium isolated from seawater, and emended description of the genus Pseudohongiella. Antonie van Leeuwenhoek. 106 (4), 809–815.CrossRefGoogle Scholar
  37. 37.
    Qi F., Motz M., Jung K., Lassak J., Frishman D. 2018. Evolutionary analysis of polyproline motifs in Escherichia coli reveals their regulatory role in translation. PLoS Comput. Biol. 14 (2), e1005987.CrossRefGoogle Scholar
  38. 38.
    Spirin A.S. 1999. Ribosomes. Springer.CrossRefGoogle Scholar
  39. 39.
    Tollerson II R., Witzky A., Ibba M. 2018. Elongation factor P is required to maintain proteome homeostasis at high growth rate. Proc. Natl. Acad. Sci. U. S. A. 115 (43), 11072–11077.CrossRefGoogle Scholar
  40. 40.
    Roy H., Zou S.B., Bullwinkle T.J., Wolfe B.S., Gilreath M.S., Forsyth C.J., Navarre W.W., Ibba M. 2011. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-beta-lysine. Nat. Chem. Biol. 7 (10), 667–669.CrossRefGoogle Scholar
  41. 41.
    Kaniga K., Compton M.S., Curtiss R. 3rd, Sundaram P. 1998. Molecular and functional characterization of Salmonella enterica serovar typhimurium poxA gene: Effect on attenuation of virulence and protection. Infect. Immun. 66 (12), 5599–5606.Google Scholar
  42. 42.
    Choi E., Nam D., Choi J., Park S., Lee J.S., Lee E.J. 2018. Elongation factor P controls translation of the mgtA gene encoding a Mg2+ transporter during Salmonella infection. MicrobiologyOpen. e 680, 1–9.Google Scholar
  43. 43.
    Schuller A.P., Wu C.C., Dever T.E., Buskirk A.R., Green R. 2017. eIF5A functions globally in translation elongation and termination. Mol. Cell. 66 (2), 194–205. e5.Google Scholar
  44. 44.
    Hersch S.J., Wang M., Zou S.B., Moon K.M., Foster L.J., Ibba M., Navarre W.W. 2013. Divergent protein motifs direct elongation factor P-mediated translational regulation in Salmonella enterica and Escherichia coli. MBio. 4 (2), e00180–13.CrossRefGoogle Scholar
  45. 45.
    Huter P., Arenz S., Bock L.V., Graf M., Frister. J.O., Heuer A., Peil L., Starosta A.L., Wohlgemuth I., Peske F., Novacek J., Berninghausen O., Grubmuller H., Tenson T., Beckmann R., et al. 2017. Structural basis for polyproline-mediated ribosome stalling and rescue by the translation elongation factor EF-P. Mol. Cell. 68 (3), 515–527.e6.CrossRefGoogle Scholar
  46. 46.
    Mohapatra S., Choi H., Ge X., Sanyal S., Weisshaar J.C. 2017. Spatial distribution and ribosome-binding dynamics of EF-P in live Escherichia coli. MBio. 8 (3), e00300-17.CrossRefGoogle Scholar
  47. 47.
    Chen C., Stevens B., Kaur J., Smilansky Z., Cooperman B.S., Goldman Y.E. 2011. Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis. Proc. Natl. Acad. Sci. U. S. A. 108 (41), 16980–16985.CrossRefGoogle Scholar
  48. 48.
    An G., Glick B.R., Friesen J.D., Ganoza M.C. 1980. Identification and quantitation of elongation factor EF-P in Escherichia coli cell-free extracts. Can. J. Biochem. 58 (11), 1312–1314.CrossRefGoogle Scholar
  49. 49.
    Schmidt A., Kochanowski K., Vedelaar S., Ahrne E., Volkmer B., Callipo L., Knoops K., Bauer M., Aebersold R., Heinemann M. 2016. The quantitative and condition-dependent Escherichia coli proteome. Nat. Biotechnol. 34 (1), 104–110.CrossRefGoogle Scholar
  50. 50.
    Tollerson R., Witzky A., Ibba M. 2017. Elongation Factor P interactions with the ribosome are independent of pausing. MBio. 8 (4), e01056–17.CrossRefGoogle Scholar
  51. 51.
    Selmer M., Dunham C.M., Murphy F.V. 4th, Weixlbaumer A., Petry S., Kelley A.C., Weir J.R., Ramakrishnan V. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science. 313 (5795), 1935–1942.CrossRefGoogle Scholar
  52. 52.
    Zhou J., Korostelev A., Lancaster L., Noller H.F. 2012. Crystal structures of 70S ribosomes bound to release factors RF1, RF2 and RF3. Curr. Opin. Struct. Biol. 22 (6), 733–742.CrossRefGoogle Scholar
  53. 53.
    Buchan J.R., Stansfield I. 2007. Halting a cellular production line: Responses to ribosomal pausing during translation. Biol. Cell. 99 (9), 475–487.CrossRefGoogle Scholar
  54. 54.
    Adamski F.M., Donly B.C., Tate W.P. 1993. Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA. Nucleic Acids Res. 21 (22), 5074–5078.CrossRefGoogle Scholar
  55. 55.
    McNulty D.E., Claffee B.A., Huddleston M.J., Porter M.L., Cavnar K.M., Kane J.F. 2003. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli. Protein Expr. Purif. 27 (2), 365–374.CrossRefGoogle Scholar
  56. 56.
    Fu C., Parker J. 1994. A ribosomal frameshifting error during translation of the argI mRNA of Escherichia coli. Mol. Gen. Genet. 243 (4), 434–441.Google Scholar
  57. 57.
    Gurvich O.L., Baranov P.V., Gesteland R.F., Atkins J.F. 2005. Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli. J. Bacteriol. 187 (12), 4023–4032.CrossRefGoogle Scholar
  58. 58.
    Gallant J.A., Lindsley D. 1998. Ribosomes can slide over and beyond “hungry” codons, resuming protein chain elongation many nucleotides downstream. Proc. Natl. Acad. Sci. U. S. A. 95 (23), 13771–13776.CrossRefGoogle Scholar
  59. 59.
    Gamper H.B., Masuda I., Frenkel-Morgenstern M., Hou Y.M. 2015. Maintenance of protein synthesis reading frame by EF-P and m(1)G37-tRNA. Nat. Commun. 6, 7226.CrossRefGoogle Scholar
  60. 60.
    Alejo J.L., Blanchard S.C. 2017. Miscoding-induced stalling of substrate translocation on the bacterial ribosome. Proc. Natl. Acad. Sci. U. S. A. 114 (41), E8603–E8610.CrossRefGoogle Scholar
  61. 61.
    Zou S.B., Hersch S.J., Roy H., Wiggers J.B., Leung A.S., Buranyi S., Xie J.L., Dare K., Ibba M., Navarre W.W. 2012. Loss of elongation factor P disrupts bacterial outer membrane integrity. J. Bacteriol. 194 (2), 413–425.CrossRefGoogle Scholar
  62. 62.
    Hanawa-Suetsugu K., Sekine S., Sakai H., Hori-Takemoto C., Terada T., Unzai S., Tame J.R., Kuramitsu S., Shirouzu M., Yokoyama S. 2004. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc. Natl. Acad. Sci. U. S. A. 101 (26), 9595–9600.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. A. Golubev
    • 1
  • Sh. Z. Validov
    • 1
  • K. S. Usachev
    • 1
  • M. M. Yusupov
    • 1
    • 2
    Email author
  1. 1.Institute of Fundamental Medicine and Biology, Kazan (Volga) Federal UniversityKazanRussia
  2. 2.Institut de Génétique et de Biologie Moléculaire et CellulaireStrasbourgFrance

Personalised recommendations