Molecular Biology

, Volume 53, Issue 4, pp 580–585 | Cite as

Somatic Mutations Associated with Metastasis in Acral Melanoma

  • I. S. Abramov
  • M. A. Emelyanova
  • O. O. Ryabaya
  • G. S. Krasnov
  • A. S. Zasedatelev
  • T. V. NasedkinaEmail author


Acral melanoma is one of the most aggressive and fast-growing forms of cutaneous melanoma and is characterized by a predominant location on the palms and feet. Primary tumors, metastases, and normal tissue samples from five acral melanoma patients were examined by massive parallel sequencing, focusing on the coding regions of 4100 genes involved in the origin and progression of hereditary and oncology diseases. Somatic mutations were found in genes related to cell division, proliferation, and apoptosis (BRAF, NRAS, VAV1, GATA1, and GCM2); cell adhesion (CTNND2 and ITGB4); angiogenesis (VEGFA); and the regulation of energy metabolism (BCS1L). Comparisons of target DNA sequences between morphologically normal and primary tumor tissues and between normal and metastatic tissues identified the candidate genes responsible for rapid metastasis in acral melanoma.


acral melanoma metastasis massive parallel sequencing somatic mutations 



This work was supported by the Russian Science Foundation (project no. 14-35-00107).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The study was approved by the Ethics Committee at the Blokhin National Medical Research Center of Oncology (Ministry of Health of the Russian Federation). All patients gave their written informed consent to their tissue samples being used for research purposes.


  1. 1.
    Grebennikova O.P., Prilepo V.N. 2009. Melanoma, in Onkologiya dlya praktikuyushchikh vrachei (Oncology for Practicing Physicians), Chistyakov S.S., Ed., Moscow: KMK, pp. 548–563.Google Scholar
  2. 2.
    Bertolotto C. 2013. Melanoma: From melanocyte to genetic alterations and clinical options. Scientifica (Cairo). 2013, 1–22.CrossRefGoogle Scholar
  3. 3.
    Mazurenko N.N. 2014. Genetic features and markers of skin melanoma. Usp. Mol. Onkol. 2, 26–35.Google Scholar
  4. 4.
    Feibleman C.E., Stoll H., Maize J.C. 1980. Melanomas of the palm, sole, and nailbed: A clinicopathologic study. Cancer. 46 (11), 2492–2504.CrossRefGoogle Scholar
  5. 5.
    Borisova T.N., Kudryavtseva G.T. 2005. Combined treatment of metastatic acral melanoma. Sib. Oncol. Zh. 7 (14), 39–41.Google Scholar
  6. 6.
    Curtin J.A., Fridlyand J., Kageshita T., Patel H.N., Busam K.J., Kutzner H., Cho K.H., Aiba S., Bröcker E.B., LeBoit P.E., Pinkel D., Bastian B.C. 2005. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353 (20), 2135–2147.CrossRefGoogle Scholar
  7. 7.
    Bolger A.M., Lohse M., Usadel B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 30 (15), 2114–2120.CrossRefGoogle Scholar
  8. 8.
    McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., DePristo M.A. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20 (9), 1297–1303.CrossRefGoogle Scholar
  9. 9.
    Cibulskis K., Lawrence M.S., Carter S.L., Sivachenko A., Jaffe D., Sougnez C., Gabriel S., Meyerson M., Lander E.S., Getz G. 2013. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31 (3), 213–219.CrossRefGoogle Scholar
  10. 10.
    Vaser R., Adusumalli S., Leng S.N., Sikic M., Ng P.C. 2016. SIFT missense predictions for genomes. Nat. Protoc. 11 (1), 1–9.CrossRefGoogle Scholar
  11. 11.
    Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. 2010. A method and server for predicting damaging missense mutations. Nat. Methods. 7 (4), 248–249.CrossRefGoogle Scholar
  12. 12.
    Schwarz J.M., Cooper D.N., Schuelke M., Seelow D. 2014. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods. 11 (4), 361–362.CrossRefGoogle Scholar
  13. 13.
    Chun S., Fay J.C. 2009. Identification of deleterious mutations within three human genomes. Genome Res. 19 (9), 1553–1561.CrossRefGoogle Scholar
  14. 14.
    Zhu X., Jin H., Xia Z., Wu X., Yang M., Zhang H., Shang X., Cheng R., Zhan Z., Yu Z. 2017. Vav1 expression is increased in esophageal squamous cell carcinoma and indicates poor prognosis. Biochem. Biophys. Res. Commun. 486 (2), 571–576.CrossRefGoogle Scholar
  15. 15.
    Ling T., Crispino J.D., Zingariello M., Martelli F., Migliaccio A.R. 2018. GATA1 insufficiencies in primary myelofibrosis and other hematopoietic disorders: consequences for therapy. Expert Rev. Hematol. 11 (3), 169–184.CrossRefGoogle Scholar
  16. 16.
    Bot S.T., Vermeer S., Buijsman W., Heister A., Voorendt M., Verrips A., Scheffer H., Kremer H.P., Warrenburg B.P., Kamsteeg E.J. 2013. Pure adult-onset spastic paraplegia caused by a novel mutation in the KIAA0196 (SPG8) gene. J. Neurol. 260 (7), 1765–1769.CrossRefGoogle Scholar
  17. 17.
    Bierie B., Pierce S.E., Kroeger C., Stover D.G., Pattabiraman D.R., Thiru P., Liu Donaher J., Reinhardt F., Chaffer C.L., Keckesova Z., Weinberg R.A. 2017. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 114 (12), E2337–E2346.CrossRefGoogle Scholar
  18. 18.
    Tahara H., Naito H., Kise K., Wakabayashi T., Kamoi K., Okihara K., Yanagisawa A., Nakai Y., Nonomura N., Morii E., Miki T., Takakura N. 2015. Evaluation of PSF1 as a prognostic biomarker for prostate cancer. Prostate Cancer Prostatic Dis. 18 (1), 56–62.CrossRefGoogle Scholar
  19. 19.
    Zhang J., Wu Q., Wang Z., Zhang Y., Zhang G., Fu J., Liu C. 2015. Knockdown of PSF1 expression inhibits cell proliferation in lung cancer cells in vitro. Tumor Biol. 36 (3), 2163–2168.CrossRefGoogle Scholar
  20. 20.
    Temprano A., Sembongi H., Han G.S., Sebastián D., Capellades J., Moreno C., Guardiola J., Wabitsch M., Richart C., Yanes O., Zorzano A., Carman G.M., Siniossoglou S., Miranda M. 2016. Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes. Diabetologia. 59 (9), 1985–1994.CrossRefGoogle Scholar
  21. 21.
    Beeler N., Riederer B.M., Waeber G., Abderrahmani A. 2009. Role of the JNK-interacting protein 1/islet brain 1 in cell degeneration in Alzheimer disease and diabetes. Brain Res. Bull. 80 (4–5), 274–281.CrossRefGoogle Scholar
  22. 22.
    Sun Y., Wang F., Sun X., Wang X., Zhang L., Li Y. 2017. CX3CR1 regulates osteoarthrosis chondrocyte proliferation and apoptosis via Wnt/β-catenin signaling. Biomed. Pharmacother. 96, 1317–1323.CrossRefGoogle Scholar
  23. 23.
    Wang H., Cai J., Du S., Guo Z., Xin B., Wang J., Wei W., Shen X. 2017. Fractalkine/CX3CR1 induces apoptosis resistance and proliferation through the activation of the AKT/NF-κB cascade in pancreatic cancer cells. Cell Biochem. Funct. 35 (6), 315–326.CrossRefGoogle Scholar
  24. 24.
    Stout M.C., Narayan S., Pillet E.S., Salvino J.M., Campbell P.M. 2018. Inhibition of CX3CR1 reduces cell motility and viability in pancreatic adenocarcinoma epithelial cells. Biochem. Biophys. Res. Commun. 495 (3), 2264–2269.CrossRefGoogle Scholar
  25. 25.
    Everything about cancer: diagnosis, therapy, oncologists’ advice online, OncoForum. Accessed November 17, 2018.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • I. S. Abramov
    • 1
  • M. A. Emelyanova
    • 1
  • O. O. Ryabaya
    • 2
  • G. S. Krasnov
    • 1
  • A. S. Zasedatelev
    • 1
  • T. V. Nasedkina
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations