Molecular Biology

, Volume 53, Issue 3, pp 379–383 | Cite as

Multiple Interactions of the Oct-1 (POU2F1) Transcription Factor with PORE and MORE Sites

  • A. G. StepchenkoEmail author
  • S. G. Georgieva
  • E. V. Pankratova


The Oct-1 (POU2F1) transcription factor is one of the most important regulatory proteins in humans and other mammals. An increase in Oct-1 aids the resistance to oxidative and cytotoxic stresses and radiation exposure. A high level of Oct-1 is found in many human tumors and correlates with low survival. Oct-1 interacts with its binding sites as a monomer, a homodimer, or a multimer. The nucleotide sequence of the Oct-1 binding site determines the character of interaction and the conformation of Oct-1 on target DNA, thus influencing the binding of Oct-1 co-repressors and co-activators. Nucleotide substitutions were introduced in all positions of the PORE and MORE sequences and tested for effect on the Oct-1 capability of forming monomeric and dimeric DNA–protein complexes. The position and nature of nucleotide substitutions were found to affect the type of Oct-1 binding to DNA. Several substitutions suppressed the formation of dimers, while others stimulated the process. Certain nucleotide substitutions completely prevented the binding of both monomers and dimers. The Oct-1 concentration in the cell is another factor that affects the character of DNA–protein interactions. Based on the results, the nature and affinity of interaction with Oct-1 is possible to predict from the nucleotide sequence for PORE and MORE sites of the human genome.


Oct-1 (POU2F1 ) transcription factor DNA–protein interaction transcription regulation 



  1. 1.
    Kang J., Gemberling M., Nakamura M., Whitby F.G., Handa H., Fairbrother W.G., Tantin D. 2009. A general mechanism for transcription regulation by Oct1 and Oct4 in response to genotoxic and oxidative stress. Genes Dev. 23, 208–222.CrossRefGoogle Scholar
  2. 2.
    Xiao S., Liao S., Zhou Y., Jang B., Li Y., Xue M. 2014. High expression of octamer transcription factor 1 in cervical cancer. Oncol. Lett. 7, 1889–1894.CrossRefGoogle Scholar
  3. 3.
    Maddox J., Shakya A., South S., Shelton D., Andersen J.N., Chidester S., Kang J., Gligorich K.M., Jones D., Spangrude G.J., Welm B.E., Tantin D. 2012. Transcription factor Oct1 is a somatic and cancer stem cell determinant. PLoS Genet. 8, e1003048. CrossRefGoogle Scholar
  4. 4.
    Wang Y.P., Song G.H., Chen J., Xiao C., Li C., Zhong L., Sun X., Wang Z.W., Deng G.L., Yu F.D., Xue Y.M., Tang H.M., Peng Z.H., Wang X.L. 2016. Elevated Oct-1 participates in colon tumorigenesis and independently predicts poor prognoses of colorectal cancer patients. Tumor Biol. 37, 3247–3255.CrossRefGoogle Scholar
  5. 5.
    Pankratova E.V., Stepchenko A.G., Krylova I.D., Portseva T.N., Georgieva S.G. 2018. The regulatory interplay between Oct-1 isoforms contributes to hematopoiesis and the isoforms imbalance correlates with a malignant transformation of B cells. Oncotarget. 9, 29892–29905.CrossRefGoogle Scholar
  6. 6.
    Kang J., Shakya A., Tantin D. 2009. Stem cells, stress, metabolism and cancer: A drama in two Octs. Trends Biochem. Sci. 34, 491–499.CrossRefGoogle Scholar
  7. 7.
    Yang J., Muller-Immergluck M.M., Seipel K., Janson L., Westin G., Schaffner W., Pettersson U. 1991. Both Oct-1 and Oct-2A contain domains which can activate the ubiquitously expressed U2 snRNA genes. EMBO J. 10, 2291–2296.CrossRefGoogle Scholar
  8. 8.
    Strom A.C., Forsberg M., Lillhager P., Westin G. 1996. The transcription factors Sp1 and Oct-1 interact physically to regulate human U2 snRNA gene expression. Nucleic Acids Res. 24, 1981–1986.CrossRefGoogle Scholar
  9. 9.
    Sturm R.A., Das G., Herr W. 1998. The ubiquitous octamer-binding protein Oct-1 contains a POU domain with a homeo box subdomain. Genes Dev. 2, 1582–1599.CrossRefGoogle Scholar
  10. 10.
    Pankratova E.V., Sytina E.V., Luchina N.N., Krivega I.V. 2003. The regulation of the oct-1 gene transcription is mediated by two promoters. Immunol. Lett. 88, 15–20.CrossRefGoogle Scholar
  11. 11.
    Pankratova E.V., Sytina E., Polanovsky O. 2006. Autoregulation of Oct-1 gene expression is mediated by two Octa-sites in alternative promoter. Biochimie. 88, 1323–1329.CrossRefGoogle Scholar
  12. 12.
    Pankratova E.V., Stepchenko A.G., Portseva T., Mogila V.A., Georgieva S.G. 2016. Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt’s lymphoma cells affect a wide range of cellular processes. Nucleic Acids Res. 44, 9218–9230.Google Scholar
  13. 13.
    Verrijer G.P., Alkema M.G., van Weperen W.W., Van Leeuwen H.C., Strating M.J., Van der Vliet P.C. 1992. The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J. 11, 4993–5003.Google Scholar
  14. 14.
    Stepchenko A.G. 1994. Noncanonical Oct-sequences are targets for mouse Oct-2B transcription factor. FEBS Lett. 337, 175–178.CrossRefGoogle Scholar
  15. 15.
    Tomilin A., Remenyi A., Lins K., Bak H., Leidel S., Vrieno G., Wilmanns M., Scholer H.R. 2000. Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell. 103, 853–864.CrossRefGoogle Scholar
  16. 16.
    Sytina E.V., Pankratova E.V. 2003. Transcription factor Oct-1: Plasticity and multiplicity of functions. Mol. Biol. (Moscow). 37 (5), 637–648.CrossRefGoogle Scholar
  17. 17.
    Qian J., Kong X., Deng N., Tan P., Chen H., Wang J., Li Z., Hu Y., Zou W., Xu J., Fang J.Y. 2015. Oct-1 is a determinant of synbindin-related ERK signaling with independent prognostic significance in gastric cancer. Gut. 64, 37–48.CrossRefGoogle Scholar
  18. 18.
    Kalamohan K., Periasamy J., Bhaskar Rao D., Barnabas G.D., Ponnaiyan S., Ganesan K. 2014. Transcriptional coexpression network reveals the involvement of varying stem cell features with different dysregulations in different gastric cancer subtypes. Mol. Oncol. 8, 1306–1325.CrossRefGoogle Scholar
  19. 19.
    Hwang-Verslues W.W., Chang P.H., Jeng Y.M., Kuo W.H., Chiang P.H., Chang Y.C., Hsieh T.H., Su F.Y., Lin L.C., Abbondante S., Yang C.Y., Hsu H.M., Yu J.C., Chang K.J., Shew J.Y., et al. 2013. Loss of corepressor PER2 under hypoxia up-regulates Oct-1-mediated ENT gene expression and enhances tumor malignancy. Proc. Natl. Acad. Sci. U. S. A. 110, 12331–12336.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. G. Stepchenko
    • 1
    Email author
  • S. G. Georgieva
    • 1
  • E. V. Pankratova
    • 1
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations