Advertisement

Molecular Biology

, Volume 53, Issue 3, pp 335–341 | Cite as

Prion Properties of Alpha-Synuclein

  • A. L. Schwarzman
  • K. A. Senkevich
  • A. K. Emelyanov
  • S. N. PchelinaEmail author
REVIEWS
  • 26 Downloads

Abstract—

The prion properties of alpha-synuclein, a key aggregating protein involved in the pathogenesis of so-called synucleinopathies, including Parkinson’s disease (PD), dementia with Lewy bodies, multiple system atrophy, and its various conformers are discussed. It is shown that alpha-synuclein may be transferred between cells by prion-like propagation. Similarly to other prions, alpha-synuclein aggregation develops from the initial lag-phase (nucleation) to the subsequent growth phase (elongation), and to the stationary phase where the aggregates and monomers exist in equilibrium. Similarly to prions, alpha-synuclein undergoes conformational changes from an alpha-helix to its beta-folded structure. However, there is currently no evidence that alpha-synuclein-dependent PD can be transmitted from person-to-person. This review describes the prion properties of alpha-synuclein, possible ways of its intercellular propagation, and novel approaches to PD diagnostics.

Keywords:

Parkinson’s disease alpha-synuclein prions alpha-synuclein transmission 

Notes

REFERENCES

  1. 1.
    Shelkovnikova T.A., Kulikova A.A., Tsvetkov Ph.O., Peters O., Bachurin S.O., Buchman V.L., Ninkina N.N. 2012. Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology. Mol. Biol. (Moscow). 46 (3), 362–374.CrossRefGoogle Scholar
  2. 2.
    Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., Goedert M. 1997. Alpha-synuclein in Lewy bodies. Nature. 388 (6645), 839–840.CrossRefGoogle Scholar
  3. 3.
    Conway K., Harper J., Lansbury P. 1998. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat. Med. 11, 1318–1320.CrossRefGoogle Scholar
  4. 4.
    Goedert M., Jakes R., Spillantini M.G. 2017. The synucleinopathies: Twenty years on. J. Parkinson Dis. 7 (S1), S51–S69.  https://doi.org/10.3233/JPD-179005 CrossRefGoogle Scholar
  5. 5.
    Bridi J., Hirth F. 2018. Mechanisms of α-synuclein induced synaptopathy in Parkinson’s disease. Front. Neurosci. 12, 80.  https://doi.org/10.3389/fnins.2018.00080 CrossRefGoogle Scholar
  6. 6.
    Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., Stenroos E.S., Chandrasekharappa S., Athanassiadou A., Papapetropoulos T., Johnson W.G., et al. 1997. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 5321, 2045–2047.CrossRefGoogle Scholar
  7. 7.
    Chartier-Harlin M., Kachergus J., Roumier C., Mouroux V., Douay X., Lincoln S., Levecque C., Larvor L., Andrieux J., Hulihan M., Waucquier N., Defebvre L., Amouyel P., Farrer M., Destée A. 2004. α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 364, 1167–1169.CrossRefGoogle Scholar
  8. 8.
    Singleton A.B., Farrer M., Johnson J. 2003. α-Synuclein locus triplication causes Parkinson’s disease. Science. 302, 841.CrossRefGoogle Scholar
  9. 9.
    Tofaris G. 2017. A critical assessment of exosomes in the pathogenesis and stratification of Parkinson’s disease. J. Parkinsons Dis. 7, 569–576.CrossRefGoogle Scholar
  10. 10.
    Melki R. 2018. How the shapes of seeds can influence pathology. Neurobiol. Dis. 109, 201–208.CrossRefGoogle Scholar
  11. 11.
    Brundin P., Melki R. 2017. Prying into the prion hypothesis for Parkinson’s disease. J. Neurosci. 37, 9808–9818.CrossRefGoogle Scholar
  12. 12.
    Brás I., Lopes L., Outeiro T. 2018. Sensing α-synuclein from the outside via the prion protein: Implications for neurodegeneration. Mov. Disord. 33, 1675–1684.CrossRefGoogle Scholar
  13. 13.
    Kordower J.H., Chu Y., Hauser R.A., Freeman T.B., Olanow C.W. 2008. Parkinson’s disease pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506.CrossRefGoogle Scholar
  14. 14.
    Li J.Y., Englund E., Holton J.L., Soulet D., Hagell P., Lees A.J., Lashley T., Quinn N.P., Rehncrona S., Björklund A., Widner H., Revesz T., Lindvall O., Brundin P. 2008. Lewy bodies in grafted neurons in people with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503.CrossRefGoogle Scholar
  15. 15.
    Desplats P., Lee H.J., Bae E.J., Patric C., Rockenstein E., Crews L., Spencer B., Masliah E., Lee S.J. 2009. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl. Acad. Sci. U. S. A. 106, 13004–13005.CrossRefGoogle Scholar
  16. 16.
    Braak H., Del Tredici K., Rüb U., de Vos R.A., Jansen Steur E.N., Braak E. 2003. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 24, 197–211.CrossRefGoogle Scholar
  17. 17.
    Kujawska M., Jodynis-Liebert J. 2018. What is the evidence that Parkinson’s disease is a prion disorder, which originates in the gut? Int. J. Mol. Sci. 19, 3573.CrossRefGoogle Scholar
  18. 18.
    Uemura N., Yagi H., Uemura M.T., Hatanaka Y., Yamakado H., Takahashi R. 2018. Inoculation of α‑synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol. Neurodegener. 13, 21.CrossRefGoogle Scholar
  19. 19.
    Rey N., Steiner J., Maroof N., Luk K., Madaj Z., Trojanowski J., Lee V., Brundin P. 2016. Widespread transneuronal propagation of α-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J. Exp. Med. 213, 1759–1778.CrossRefGoogle Scholar
  20. 20.
    Recasens A., Ulusov A., Kahle P.J., Di Monte D.A., Dehay B. 2018. In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res. 373, 183–193.CrossRefGoogle Scholar
  21. 21.
    Prusiner S.B., Woerman A.L., Mordes D.A., Watts J.C., Rampersaud R., Berry D.B., Patel S., Oehler A., Lowe J.K., Kravitz S.N., Geschwind D.H., Glidden D.V., Halliday G.M., Middleton L.T., Gentleman S.M., et al. 2015. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. U. S. A. 112, E5308–E53017.CrossRefGoogle Scholar
  22. 22.
    Peng C., Gathagan R., Covell D., Medellin C., Stieber A., Robinson J., Zhang B., Pitkin R., Olufemi M., Luk K., Trojanowski J., Lee V. 2018. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature. 557, 558–563.CrossRefGoogle Scholar
  23. 23.
    Knowles T., Waudby C., Devlin G., Cohen S., Aguzzi A., Vendruscolo M., Terentjev E., Welland M., Dobson C. 2009. An analytical solution to the kinetics of breakable filament assembly. Science. 326, 1533–1537.CrossRefGoogle Scholar
  24. 24.
    Lee V.M., Trojanowski J.Q. 2006. Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: New targets for drug discovery. Neuron. 52, 33–38.CrossRefGoogle Scholar
  25. 25.
    Lashuel H.A., Overk C.R., Oueslati A., Masliah E. 2013. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48.CrossRefGoogle Scholar
  26. 26.
    Oueslati A., Ximerakis M. Vekrellis K. 2014. Protein transmission, seeding and degradation: Key steps for α‑synuclein prion-like propagation. Exp. Neurobiol. 23, 324–336.CrossRefGoogle Scholar
  27. 27.
    Narhi L., Wood S.J., Steavenson S., Jiang Y., Wu G.M., Anafi D., Kaufman S.A., Martin F., Sitney K., Denis P., Louis J.-C., Wypych J., Biere A.L., Citron M. 1999. Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. J. Biol. Chem. 274, 9843–9846.CrossRefGoogle Scholar
  28. 28.
    Yonetani M., Nonaka T., Masuda M., Inukai Y., Oikawa T., Hisanaga S., Hasegawa M. 2009. Conversion of wildtype α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J. Biol. Chem. 284, 7940–7950.CrossRefGoogle Scholar
  29. 29.
    Bousset L., Pieri L., Ruiz-Arlandis G., Gath J., Jensen P., Habenstein B., Madiona K., Olieric V., Böckmann A., Meier B., Melki R. 2013. Structural and functional characterization of two alpha-synuclein strains. Nat. Commun. 4, 2575.  https://doi.org/10.1038/ncomms3575 CrossRefGoogle Scholar
  30. 30.
    Peelaerts W., Bousset L., Van der Perren A., Moskalyuk A., Pulizzi R., Giugliano M., Van den Haute C., Melki R., Baekelandt V. 2015. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 522, 340–344.CrossRefGoogle Scholar
  31. 31.
    Iljina M., Garcia G., Horrocks M., Tosatto L., Choi M., Ganzinger K., Abramov A., Gandhi S., Wood N., Cremades N., Dobson C., Knowles T., Klenerman D. 2016. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc. Natl. Acad. Sci. U. S. A. 113, E1206–E1215.CrossRefGoogle Scholar
  32. 32.
    Aulić S., Masperone L., Narkiewicz J., Isopi E., Bistaffa E., Ambrosetti E., Pastore B., De Cecco E., Scaini D., Zago P., Moda F., Tagliavini F., Legname G. 2017. α-Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci. Rep. 7, 10050.CrossRefGoogle Scholar
  33. 33.
    Bieri G., Gitler A., Brahic M. 2018. Internalization, axonal transport and release of fibrillar forms of alpha-synuclein. Neurobiol. Dis. 109, 219–225.CrossRefGoogle Scholar
  34. 34.
    Delenclos M., Trendafilova T., Mahesh D., Baine A., Moussaud S., Yan I., Patel T., McLean P. 2017. Investigation of endocytic pathways for the internalization of exosome-associated oligomeric alpha-synuclein. Front. Neurosci. 11, 172.  https://doi.org/10.3389/fnins.2017.00172 CrossRefGoogle Scholar
  35. 35.
    Alvarez-Erviti L., Seow Y., Schapira A.H., Gardiner C., Sargent I.L., Wood M.J., Cooper J.M. 2011. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42, 360–367.CrossRefGoogle Scholar
  36. 36.
    Danzer K., Kranich L., Ruf W., Cagsal-Getkin O., Winslow A., Zhu L., Vanderburg C., McLean P. 2012. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7, 42.CrossRefGoogle Scholar
  37. 37.
    Grey M., Dunning C., Gaspar R., Grey C., Brundin P., Sparr E., Linse S. 2015. Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 290, 2969–2982.CrossRefGoogle Scholar
  38. 38.
    Stuendl A., Kunadt M., Kruse N., Bartels C., Moebius W., Danzer K., Mollenhauer B., Schneider A. 2016. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain. 139, 481–494.CrossRefGoogle Scholar
  39. 39.
    Papadopoulos V., Nikolopoulou G., Antoniadou I., Karachaliou A., Arianoglou G., Emmanouilidou E., Sardi S., Stefanis L., Vekrellis K. 2018. Modulation of β-glucocerebrosidase increases α-synuclein secretion and exosome release in mouse models of Parkinson’s disease. Hum. Mol. Genet. 27, 1696–1710.Google Scholar
  40. 40.
    Bae E., Yang N., Song M., Lee C., Lee J., Jung B., Lee H., Kim S., Masliah E., Sardi S., Lee S. 2014. Glucocerebrosidase depletion enhances cell-to-cell transmission of α-synuclein. Nat. Commun. 5, 4755.  https://doi.org/10.1038/ncomms5755 CrossRefGoogle Scholar
  41. 41.
    Pchelina S.N., Emelyanov A.K., Usenko T.S. 2014. Molecular basis of Parkinsons’s disease linked to LRRK2 mutations. Mol. Biol. (Moscow). 48 (1), 1–10.CrossRefGoogle Scholar
  42. 42.
    Kong S.M., Chan B.K., Park J.S. Hill K.J., Aitken J.B., Cottle L., Farghaian H., Cole A.R., Lay P.A., Sue C.M., Cooper A.A. 2014. Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-synuclein externalization via exosomes. Hum. Mol. Genet. 23, 2816–2833.CrossRefGoogle Scholar
  43. 43.
    Soto C., Estrada L., Castilla J. 2006. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem. Sci. 31, 150–155.CrossRefGoogle Scholar
  44. 44.
    Saborio G.P., Permanne B., Soto C. 2001. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature. 411(6839), 810–813.CrossRefGoogle Scholar
  45. 45.
    Kalia L.V. 2018. Diagnostic biomarkers for Parkinson’s disease: Focus on α-synuclein in cerebrospinal fluid. Parkinsonism Relat. Disord. pii: S1353-8020(18), 30514–30515.  https://doi.org/10.1016/j.parkreldis
  46. 46.
    Atarashi R., Sano K., Satoh K., Nishida N. 2011. Real-time quaking-induced conversion: A highly sensitive assay for prion detection. Prion. 5, 150–153.CrossRefGoogle Scholar
  47. 47.
    Schmitz M., Cramm M., Llorens F., Müller-Cramm D., Collins S., Atarashi R., Satoh K., Orrù C.D., Groveman B.R., Zafar S., Schulz-Schaeffer W.J., Caughey B., Zerr I. 2016. The real-time quaking-induced conversion assay for detection of human prion disease and study of other protein misfolding diseases. Nat. Protoc. 11, 2233–2242.CrossRefGoogle Scholar
  48. 48.
    Atarashi R., Moore R., Sim V., Hughson A., Dorward D., Onwubiko H., Priola S., Caughey B. 2007. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat. Methods. 4, 645–650.CrossRefGoogle Scholar
  49. 49.
    Paciotti S., Bellomo G., Gatticchi L., Parnetti L. 2018. Are we ready for detecting α-synuclein prone to aggregation in patients? The case of “protein-misfolding cyclic amplification” and “real-time quaking-induced conversion” as diagnostic tools. Front. Neurol. 9, 415.CrossRefGoogle Scholar
  50. 50.
    Fairfoul G., McGuire L., Pal S., Ironside J., Neumann J., Christie S., Joachim C., Esiri M., Evetts S., Rolinski M., Baig F., Ruffmann C., Wade-Martins R., Hu M., Parkkinen L., Green A. 2016. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 3, 812–818.CrossRefGoogle Scholar
  51. 51.
    Groveman B., Orrù C., Hughson A., Raymond L., Zanusso G., Ghetti B., Campbell K., Safar J., Galasko D., Caughey B. 2018. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol. Commun. 6, 7.CrossRefGoogle Scholar
  52. 52.
    Shahnawaz M., Tokuda T., Waragai M., Mendez N., Ishii R., Trenkwalder C., Mollenhauer B., Soto C. 2017. Development of a biochemical diagnosis of Parkinson disease by detection of α-synuclein misfolded aggregates in cerebrospinal fluid. JAMA Neurol. 74, 163.CrossRefGoogle Scholar
  53. 53.
    Grigorenko A.P., Rogaev E.I. 2007. Molecular basis of Alzheimer’s disease. Mol. Biol. (Moscow). 41 (2), 294–307.CrossRefGoogle Scholar
  54. 54.
    Shadrina M.I., Slominsky P.A. 2008. Mitochondrial dysfunction and oxidative damage in the molecular pathology of Parkinson’s disease. Mol. Biol. (Moscow). 42 (5), 720–728.CrossRefGoogle Scholar
  55. 55.
    Schwarzman A.L., Sarantseva S.V. 2017. Transmission of pathogenic protein aggregates in Alzheimer’s disease. Mol. Biol. (Moscow). 51 (3), 368–371CrossRefGoogle Scholar
  56. 56.
    Chauha A., Jeans A.F. 2015. Is Parkinson’s disease truly a prion-like disorder? An appraisal of current evidence. Neurol. Res. Int. 2015, 345285.Google Scholar
  57. 57.
    Brundin P., Ma. J., Kordower J.H. 2016. How strong is the evidence that Parkinson’s disease is a prion disorder? Curr. Opin. Neurol. 29, 459–466.CrossRefGoogle Scholar
  58. 58.
    Woerman A.L., Kazmi S.A., Patel S., Freyman Y., Oehler A., Aoyagi A., Mordes D.A., Halliday G.M., Middleton L.T., Gentleman S.M., Olson S.H., Prusiner S.B. 2018. MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol. 135, 49–63.CrossRefGoogle Scholar
  59. 59.
    Neumann M., Sampathu D.M., Kwong L.K., Truax A.C., Micsenyi M.C., Chou T.T., Bruce J., Schuck T., Grossman M., Clark C.M., McCluskey L.F., Miller B.L., Masliah E., Mackenzie I.R., Feldman H., et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 314, 130–133.CrossRefGoogle Scholar
  60. 60.
    DiFiglia M., Sapp E., Chase K.O., Davies S.W., Bates G.P., Vonsattel J.P., Aronin N. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 277, 1990–1993.CrossRefGoogle Scholar
  61. 61.
    Ross E.D., Minton A., Wickner R.B. 2005. Prion domains: Sequences, structures and interactions. Nat. Cell. Biol. 7, 1039–1044CrossRefGoogle Scholar
  62. 62.
    Ashe K.H., Aguzzi A. 2013. Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion. 7, 55–59.CrossRefGoogle Scholar
  63. 63.
    Jaunmuktane Z., Simon Mead S., Ellis M., Wadsworth J.D.F., Nicoll A.J., Kenny J., Launchbury F., Linehan J., Richard-Loendt A., Sarah Walker S., Rudge P., Collinge J., Brandner S. 2015. Evidence for human transmission of amyloid-β-pathology and cerebral amyloid angiopathy. Nature. 525, 247–250.CrossRefGoogle Scholar
  64. 64.
    Irwin D.J., Abrams J.Y., Schonberger L.B., Leschek E.W., Mills J.L., Lee V.M., Trojanowski J.Q. 2013. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468.CrossRefGoogle Scholar
  65. 65.
    Rees R., Noyce A., Schrag A. 2018. The prodromes of Parkinson’s disease. Eur. J. Neurosci.  https://doi.org/10.1111/ejn.14269

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. L. Schwarzman
    • 1
  • K. A. Senkevich
    • 1
    • 2
  • A. K. Emelyanov
    • 1
    • 2
  • S. N. Pchelina
    • 1
    • 2
    Email author
  1. 1.Konstantinov St. Petersburg Nuclear Physics Institute, National Research Center Kurchatov InstituteGatchinaRussia
  2. 2.Pavlov First St. Petersburg State Medical UniversitySt. PetersburgRussia

Personalised recommendations