Advertisement

Molecular Biology

, Volume 53, Issue 3, pp 442–451 | Cite as

BRCA1 and Estrogen Receptor α Expression Regulation in Breast Cancer Cells

  • A. M. Scherbakov
  • E. A. ShestakovaEmail author
  • K. E. Galeeva
  • T. A. Bogush
MOLECULAR CELL BIOLOGY
  • 12 Downloads

Abstract

BRCA1 (breast cancer 1) protein is involved in the genome stability maintenance participating in homologous recombination-dependent DNA repair. Disruption of BRCA1 functioning is associated with breast and ovarian cancer. Despite the important role of BRCA1 in DNA repair in all cell types, the development of BRCA1-associated cancer takes place mainly in estrogen-dependent tissues such as breast and ovarian ones. Using breast cancer cell line MCF-7 it was demonstrated in in vitro experiments that the estrogen 17β-estradiol (E2), phytoestrogens (genistein and apigenin) and antiestrogens (tamoxifen and fulvestrant) inhibited estrogen receptor α (ERα) expression while only genistein influenced BRCA1 increasing its expression. In hypoxia, that is an important factor of solid tumors progression, the decrease of BRCA1 and ERα expression was demonstrated in MCF-7 cells. Therefore, hypoxia influences both BRCA1-dependent DNA repair and hormonal regulation of breast cancer cell growth. Taken together, obtained results demonstrate a relationship between BRCA1 and steroid hormones signal transduction pathways in breast cancer cells and point out to the importance of complex BRCA1 and ERα expression regulation mechanisms studies including epigenetic gene expression regulation.

Keywords:

BRCA1 protein estrogen receptors breast cancer MCF-7 flow cytometry hypoxia phytoestrogens estrogens 

REFERENCES

  1. 1.
    Clark S., Rodriguez A.M., Snyder R.R., Hankins G.D.V., Boehning D. 2012. Structure-function of the tumor suppressor BRCA1. Comput. Struct. Biotechnol. J. 1, 1–8. pii: e201204005Google Scholar
  2. 2.
    Silver D.P., Dimitrov S.D., Feunteun J., Gelman R., Drapkin R., Lu S.D., Shestakova E., Soundarapandian V., DeNunzio N., Dragomir S., Mar J., Liu X., Rottenberg S., Jonkers J., Ganesan S., Livingston D.M. 2007. Further evidence for BRCA1 communication with the inactive X chromosome. Cell. 128, 991–1002.CrossRefGoogle Scholar
  3. 3.
    Hu Y., Scully R., Sobhian B., Xie A., Shestakova E., Livingston D.M. 2011. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev. 25, 685–700.CrossRefGoogle Scholar
  4. 4.
    Saha J., Davis A.J. Unsolved mystery: The role of BRCA1 in DNA end-joining. 2016. J. Radiat. Res. 57, Suppl. 1, i18–i24.CrossRefGoogle Scholar
  5. 5.
    Shestakova E.A. 2016. Epigenetic regulation of BRCA1 expression and its role in breast cancer stem cell development. Turk. J. Biol. 40, 981–989.CrossRefGoogle Scholar
  6. 6.
    Bogush T.A., Shestakova E.A., Vikhlyantseva N.O., Bogush E.A., Chemeris G.Yu., Davydov M.M. 2017. Epigenetic mechanisms of BRCA1 regulation. Onkoginekologiya. 22 (2), 4–11.Google Scholar
  7. 7.
    Sokolenko A.P., Imyanitov E.N. 2017. Molecular tests for the choice of cancer therapy. Curr. Pharm. Des. 23, 4794–4806.CrossRefGoogle Scholar
  8. 8.
    Iyevleva A.G., Imyanitov E.N. 2016. Cytotoxic and targeted therapy for hereditary cancers. Hered. Cancer Clin. Pract. 14, 17.CrossRefGoogle Scholar
  9. 9.
    Hosking L., Trowsdale J., Nicolai H., Solomon E., Foulkes W., Stamp G., Signer E., Jeffreys A. 1995. A somatic BRCA1 mutation in an ovarian tumour. Nat. Genet. 9, 343–344.CrossRefGoogle Scholar
  10. 10.
    Esteller M., Silva J.M., Dominguez G., Bonilla F., Matias-Guiu X., Lerma E., Bussaglia E., Prat J., Harkes I.C., Repasky E.A., Gabrielson E., Schutte M., Baylin S.B., Herman J.G. 2000. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl. Cancer Inst. 92, 564–569.CrossRefGoogle Scholar
  11. 11.
    Esteller M. 2006. CpG island methylation and histone modifications: Biology and clinical significance. In: Ernst Schering Research Foundation Workshop. The Histone Code and Beyond. New Approaches to Cancer Therapy, vol. 57. Eds Berger S.L., Nakanishi O., Haendler B. Springer, pp. 115–126.Google Scholar
  12. 12.
    Lu Y., Chu A., Turker M.S., Glazer P.M. 2011. Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. Mol. Cell. Biol. 31, 3339–3350.CrossRefGoogle Scholar
  13. 13.
    Wu Z.Q., Li X.Y., Hu C.Y., Ford M., Kleer C.G., Weiss S.J. 2012. Canonical Wnt signaling regulates Slug activity and links epithelial–mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc. Natl. Acad. Sci. U. S. A. 109, 16654–16659.CrossRefGoogle Scholar
  14. 14.
    McCoy M.L., Mueller C.R., Roskelley C.D. 2003. The role of the breast cancer susceptibility gene 1 (BRCA1) in sporadic epithelial ovarian cancer. Reprod. Biol. Endocrinol. 1, 72.CrossRefGoogle Scholar
  15. 15.
    Russel P.A., Pharoah P.D., De Foy K., Ramus S.J., Symmonds I., Wilson A., Scott I., Ponder B.A., Gayther S.A. 2000. Frequent loss of BRCA1 mRNA and protein expression in sporadic ovarian cancers. Int. J. Cancer. 87, 317–321.CrossRefGoogle Scholar
  16. 16.
    Ribeiro I.P., Marques F., Caramelo F., Pereira J., Patricio M., Prazeres H., Ferrao J., Juliao M.J., Castelo-Branco M., de Melo J.B., Baptista I.P., Carreira I.M. 2014. Genetic gains and losses in oral squamous cell carcinoma: Impact on clinical management. Cell Oncol. (Dordr.). 37, 29–39.CrossRefGoogle Scholar
  17. 17.
    Hosey A.M., Gorski J.J., Murray M.M., Quinn J.E., Chung W.Y., Stewart G.E., James C.R., Farragher S.M., Mulligan J.M., Scott A.N., Dervan P.A., Johnston P.G., Couch F.J., Daly P.A., Kay E., et al. 2007. Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. J. Natl. Cancer Inst. 99, 1683–1694.CrossRefGoogle Scholar
  18. 18.
    Jeffy B.D., Hockings J.K., Kemp M.Q., Morgan S.S., Hager J.A., Beliakoff J., Whitesell L.J., Bowden G.T., Romagnolo D.F. 2005. An estrogen receptor-αp300 complex activates the BRCA-1 promoter at an AP-1 site that binds Jun/Fos transcription factors: Repressive effects of p53 on BRCA-1 transcription. Neoplasia. 7, 873–882.CrossRefGoogle Scholar
  19. 19.
    Di L.J., Fernandez A.G., De Siervi A., Longo D.L., Gardner K. 2010. Transcriptional regulation of BRCA1 expression by a metabolic switch. Nat. Struct. Mol. Biol. 17, 1406–1413.CrossRefGoogle Scholar
  20. 20.
    Suba Z. 2015. DNA stabilization by the upregulation of estrogen signaling in BRCA gene mutation carriers. Drug Des. Dev. Ther. 9, 2663–2675.CrossRefGoogle Scholar
  21. 21.
    Ma Y., Fan S., Hu C., Meng Q., Fuqua S.A., Pestell R.G., Tomita Y.A., Rosen E.M. 2010. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. Mol. Endocrinol. 24, 76–90.CrossRefGoogle Scholar
  22. 22.
    Petz L.N., Ziegler Y.S., Loven M.A., Nardulli A.M. 2002. Estrogen receptor alpha and activating protein-1 mediate estrogen responsiveness of the progesterone receptor gene in MCF-7 breast cancer cells. Endocrinology. 143, 4583–4591.CrossRefGoogle Scholar
  23. 23.
    Schultz J.R., Petz L.N., Nardulli A.M. 2003. Estrogen receptor alpha and Sp1 regulate progesterone receptor gene expression. Mol. Cell. Endocrinol. 201, 165–175.CrossRefGoogle Scholar
  24. 24.
    Petz L.N., Ziegler Y.S., Schultz J.R., Kim H., Kemper J.K., Nardulli A.M. 2004. Differential regulation of the human progesterone receptor gene through an estrogen response element half site and Sp1 sites. J. Steroid Biochem. Mol. Biol. 88, 113–122.CrossRefGoogle Scholar
  25. 25.
    Donaghue C., Westley B.R., May F.E.B. 1999. Selective promoter usage of the human estrogen receptor-alpha gene and its regulation by estrogen. Mol. Endocrinol. 13, 1934–1950.Google Scholar
  26. 26.
    Andersson C., Sundberg M., Pristovsek N., Ibrahim A., Jonsson P., Katona B., Clausson C.M., Zieba A., Ramstrom M., Soderberg Williams C, Asplund A. 2017. Insufficient antibody validation challenges oestrogen receptor beta research. Nat. Commun. 8, 15840.CrossRefGoogle Scholar
  27. 27.
    Bogush T.A., Popova A.S., Dudko E.A., Bogush E.A., Tyulyandina A.S., Tyulyandin S.A., Davydov M.I. 2015. ERCC1 as a marker of ovarian cancer resistance to platinum preparations. Antibiotiki Khimioterap. 60, 42–50.Google Scholar
  28. 28.
    Bogush T.A., Dudko E.A., Shestakova E.A., Grishanina A.N., Bogush E.A., Kirsanov V.Yu., Ryabinina O.M., Vikhlyantseva N.O. 2016. Quantitative assessment of BRCA1 protein expression level in breast cancer tissue using flow cytometry. Ross. Bioterapevt. Zh. 15, 49–52.Google Scholar
  29. 29.
    Bogush T.A., Shaturova A.S., Dudko E.A., Dzhuraev E.E., Polotskii B.E., Ungiadze G.V., Davydov M.I. 2011. Quantitative immunofluorescent estimation of estrogen receptor β expression in human solid tumors using flow cytometry. Moscow Univ. Chem. Bull. 66 (4), 253–258.CrossRefGoogle Scholar
  30. 30.
    Bogush T.A., Shaturova A.S., Dudko E.A., Bogush E.A., Polotskii B.E., Tyulyandin S.A., Davydov M.I. 2014. Comparative assessment of the estrogen receptor β expression in the tissues of non-small-cell lung carcinoma and lung metastases of tumors of other primary localizations. Dokl. Biochem. Biophys. 454, 29–33.CrossRefGoogle Scholar
  31. 31.
    Bogush T.A., Dudko E.A., Semakov A.V., Bogush E.A., Tyulyandina A.S., Zarkua V.T., Tyulyandin S.A., Davydov M.I. 2014. Immunofluorescent assay of ERCC1 and estimation of clinical significance of the protein expression in ovarian cancer tissue. Dokl. Biochem. Biophys. 457, 141–145.CrossRefGoogle Scholar
  32. 32.
    Rebrova O.Yu. 2002. Statisticheskii analiz meditsinskikh dannykh. Primenenie paketa prikladnykh programm STATISTICA (Statistical Processing of Medical Data Using the STATISTICA Applications Program Package). Moscow: MediaSfera.Google Scholar
  33. 33.
    Fan S., Meng Q., Auborn K., Carter T., Rosen E.M. 2006. BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br. J. Cancer. 94, 407–426.CrossRefGoogle Scholar
  34. 34.
    Dagdemir A., Durif J., Ngollo M., Bignon Y.J., Bernard-Gallon D. 2013. Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines. Epigenomics. 5, 51–63.CrossRefGoogle Scholar
  35. 35.
    Bosviel R., Dumollard E., Dechelotte P., Bignon Y.J., Bernard-Gallon D. 2012. Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer? OMICS. 16, 235–244.CrossRefGoogle Scholar
  36. 36.
    Ono M., Ejima K., Higuchi T., Takeshima M., Wakimoto R., Nakano S. 2017. Equol enhances apoptosis-inducing activity of genistein by increasing Bax/Bcl-xL expression ratio in MCF-7 human breast cancer cells. Nutr. Cancer. 6, 1300–1307.CrossRefGoogle Scholar
  37. 37.
    Scherbakov A.M., Andreeva O.E. 2015. Apigenin inhibits growth of breast cancer cells: The role of ERα and HER2/neu. Acta Naturae. 7, 133–139.Google Scholar
  38. 38.
    Kaushik S., Shyam H., Sharma R., Balapure A.K. 2016. Genistein synergizes centchroman action in human breast cancer cells. Indian J. Pharmacol. 48, 637–642.CrossRefGoogle Scholar
  39. 39.
    Messina M. 2014. Soy foods, isoflavones, and the health of postmenopausal women. Am. J. Clin. Nutr. 100 (Suppl. 1), 423S–430S.CrossRefGoogle Scholar
  40. 40.
    Shcherbakov A.M., Vavilov N.E., Andreeva O.E., Tyaglov B.V., Mironov A.S., Shakulov R.S., Lobanov K.V., Yarotskii S.V., Shtil’ A.A. 2017. Effect of acadesine on breast cancer cells under hypoxia. Usp. Mol Onkol. 4, 60–64.CrossRefGoogle Scholar
  41. 41.
    Sorokin D.V., Scherbakov A.M., Yakushina I.A., Semina S.E., Gudkova M.V., Krasil’nikov M.A. 2016. The mechanism of adaptation of breast cancer cells to hypoxia: Role of AMPK/mTOR signaling pathway. Bull. Exp. Biol. Med. 160, 555–559.CrossRefGoogle Scholar
  42. 42.
    Gilkes D.M. 2016. Implications of hypoxia in breast cancer metastasis to bone. Int. J. Mol. Sci. 17, E1669.CrossRefGoogle Scholar
  43. 43.
    Milani M., Harris A.L. 2008. Targeting tumour hypoxia in breast cancer. Eur. J. Cancer. 44, 2766–2773.CrossRefGoogle Scholar
  44. 44.
    Lin W.H., Yeh S.H., Yeh K.H., Chen K.W., Cheng Y.W., Su T.H., Jao P., Ni L.C., Chen P.J., Chen D.S. 2016. Hypoxia-activated cytotoxic agent tirapazamine enhances hepatic artery ligation-induced killing of liver tumor in HBx transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 113, 11937–11942.CrossRefGoogle Scholar
  45. 45.
    Ferrand N., Stragier E., Redeuilh G., Sabbah M. 2012. Glucocorticoids induce CCN5/WISP-2 expression and attenuate invasion in oestrogen receptor-negative human breast cancer cells. Biochem. J. 447, 71–79.CrossRefGoogle Scholar
  46. 46.
    Rae J.M., Johnson M.D., Scheys J.O., Cordero K.E., Larios J.M., Lippman M.E. 2005. GREB 1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res. Treat. 92, 141–149.CrossRefGoogle Scholar
  47. 47.
    Sun J., Zhou W., Kaliappan K., Nawaz Z., Slingerland J.M. 2012. ERα phosphorylation at Y537 by Src triggers E6-AP-ERα binding, ERα ubiquitylation, promoter occupancy, and target gene expression. Mol. Endocrinol. 26, 1567–1577.CrossRefGoogle Scholar
  48. 48.
    Nawaz, Z., Lonard D.M., Dennis A.P., Smith C.L., O’Malley B.W. 1999. Proteasome-dependent degradation of the human estrogen receptor. Proc. Natl. Acad. Sci. U. S. A. 96, 1858–1862.CrossRefGoogle Scholar
  49. 49.
    Reid G., Hubner M.R., Metivier R., Brand H., Denger S., Manu D., Beaudouin J., Ellenberg J., Gannon F. 2003. Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol. Cell. 11, 695–707.CrossRefGoogle Scholar
  50. 50.
    Stanisic V., Malovannaya A., Qin J., Lonard D.M., O’Malley B.W.J. 2009. OTU Domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) deubiquitinates estrogen receptor (ER) alpha and affects ERalpha transcriptional activity. Biol. Chem. 284, 16135–16145.CrossRefGoogle Scholar
  51. 51.
    Prat A., Adamo B., Cheang M.C., Anders C.K., Carey L.A., Perou C.M. 2013. Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist. 18, 123–133.CrossRefGoogle Scholar
  52. 52.
    Hentze M.W. 1995. Translational regulation: Versatile mechanisms for metabolic and developmental control. Curr. Opin. Cell Biol. 7, 393–398.CrossRefGoogle Scholar
  53. 53.
    Silvera D., Formenti S.C., Schneider R.J. 2010. Translational control in cancer. Nat. Rev. Cancer. 10, 254–266.CrossRefGoogle Scholar
  54. 54.
    Gudas J.M., Nguyen H., Li T., Cowan K.H. 1995. Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 55, 4561–4565.Google Scholar
  55. 55.
    Fustier P., Corre L.L, Chalabi N., Vissac-Sabatier C., Communal Y., Bignon Y.J., Bernard-Gallon D.J. 2003. Resveratrol increases BRCA1 and BRCA2 mRNA expression in breast tumour cell lines. Br. J. Cancer. 89, 168–172.CrossRefGoogle Scholar
  56. 56.
    Daujat S., Bauer U.M., Shah V., Turner B., Berger S., Kouzarides T. 2002. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr. Biol. 12, 2090–2097.CrossRefGoogle Scholar
  57. 57.
    Fang M.Z., Chen D., Sun Y., Jin Z., Christman J.K., Yang C.S. 2005. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavons from soy. Clin. Cancer Res. 11, 7033–7041.CrossRefGoogle Scholar
  58. 58.
    King-Batoon A., Leszczynska J.M., Klein C.B. 2008. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ. Mol. Mutagen. 49, 36–45.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. M. Scherbakov
    • 1
  • E. A. Shestakova
    • 1
    Email author
  • K. E. Galeeva
    • 1
  • T. A. Bogush
    • 1
  1. 1.Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations