Advertisement

Molecular Biology

, Volume 53, Issue 3, pp 411–418 | Cite as

Impedance Spectroscopy and Transcriptome Analysis of Choriocarcinoma BeWo b30 as a Model of Human Placenta

  • S. V. NikulinEmail author
  • E. N. Knyazev
  • T. N. Gerasimenko
  • S. A. Shilin
  • I. N. Gazizov
  • G. S. Zakharova
  • A. A. Poloznikov
  • D. A. Sakharov
MOLECULAR CELL BIOLOGY
  • 10 Downloads

Abstract

Placenta is a highly specialized organ that is necessary for successful gestation. Several models of the placental barrier are used to study how it functions, including the transplacental transport of xenobiotics. One of these models, human choriocarcinoma cell line BeWo is widely used in vitro. Notably, cancerous BeWo cells form multilayer structures that normally are not found in the human placenta. Here, we aim to develop techniques suitable for monitoring BeWo b30 cells in culture. To assess the state of BeWo b30 cells growing on a membrane, we use impedance spectroscopy, which allows us to estimate the number of cell layers by the change in the electrical parameters of the biological system. In mature BeWo b30 cell cultures, we also note a significant increase in the expression of genes encoding metallothioneins (particularly, MT1B, MT1F, and MT2A) and syncytins (ERVW-1 and ERVFRD-1), which can be used as biomarkers reflecting the development of mature phenotypic characteristics, namely, trophoblastic invasion and formation of the syncytium.

Keywords:

impedance spectroscopy TEER placental barrier multilayer BeWo b30 metallothioneins 

Notes

REFERENCES

  1. 1.
    Gude N.M., Roberts C.T., Kalionis B., King R.G. 2004. Growth and function of the normal human placenta. Thromb. Res. 114, 397–407.CrossRefGoogle Scholar
  2. 2.
    Lee J.S., Romero R., Han Y.M., Kim H.C., Kim C.J., Hong J.-S., Huh D. 2016. Placenta-on-a-chip: A novel platform to study the biology of the human placenta. J. Matern. Neonatal Med. 29, 1046–1054.CrossRefGoogle Scholar
  3. 3.
    Schmidt A., Morales-Prieto D.M., Pastuschek J., Fröhlich K., Markert U.R. 2015. Only humans have human placentas: Molecular differences between mice and humans. J. Reprod. Immunol. 108, 65–71.CrossRefGoogle Scholar
  4. 4.
    Blundell C., Tess E.R., Schanzer A.S.R., Coutifaris C., Su E.J., Parry S., Huh D. 2016. A microphysiological model of the human placental barrier. Lab Chip. 16, 3065–3073.CrossRefGoogle Scholar
  5. 5.
    Bode C.J., Jin H., Rytting E., Silverstein P.S., Young A.M., Audus K.L. 2006. In vitro models for studying trophoblast transcellular transport. Methods Mol. Med. 122, 225–39.Google Scholar
  6. 6.
    Heaton S.J., Eady J.J., Parker M.L., Gotts K.L., Dainty J.R., Fairweather-Tait S.J., McArdle H.J., Srai K.S., Elliott R.M. 2008. The use of BeWo cells as an in vitro model for placental iron transport. Am. J. Physiol. Physiol. 295, C1445–C1453.CrossRefGoogle Scholar
  7. 7.
    Ribatti D. 2017. A revisited concept: Contact inhibition of growth. From cell biology to malignancy. Exp. Cell Res. 359, 17–19.CrossRefGoogle Scholar
  8. 8.
    Müller E., Gräfe C., Wiekhorst F., Bergemann C., Weidner A., Dutz S., Clement J. 2018. Magnetic nanoparticles interact and pass an in vitro co-culture blood-placenta barrier model. Nanomaterials. 8, 108.CrossRefGoogle Scholar
  9. 9.
    Correia Carreira S., Walker L., Paul K., Saunders M. 2015. In vitro models of the human placental barrier— In regione caecorum rex est luscus. Nanotoxicology. 9, 135–136.CrossRefGoogle Scholar
  10. 10.
    Sood A., Salih S., Roh D., Lacharme-Lora L., Parry M., Hardiman B., Keehan R., Grummer R., Winterhager E., Gokhale P.J., Andrews P.W., Abbott C., Forbes K., Westwood M., Aplin J.D., et al. 2011. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat. Nanotechnol. 6, 824–833.CrossRefGoogle Scholar
  11. 11.
    Poloznikov A., Gazaryan I., Shkurnikov M., Nikulin S., Drapkina O., Baranova A., Tonevitsky A. 2018. In vitro and in silico liver models: Current trends, challenges and opportunities. ALTEX. 35, 397–412.CrossRefGoogle Scholar
  12. 12.
    Poloznikov A.A., Zakhariants A.A., Nikulin S.V., Smirnova N.A., Hushpulian D.M., Gaisina I.N., Tonevitsky A.G., Tishkov V.I., Gazaryan I.G. 2017. Structure-activity relationship for branched oxyquinoline HIF activators: Effect of modifications to phenylacetamide “tail.” Biochimie. 133, 74–79.CrossRefGoogle Scholar
  13. 13.
    Srinivasan B., Kolli A.R., Esch M.B., Abaci H.E., Shuler M.L., Hickman J.J. 2015. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126.CrossRefGoogle Scholar
  14. 14.
    Henry O.Y.F., Villenave R., Cronce M.J., Leineweber W.D., Benz M.A., Ingber D.E. 2017. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip. 17, 2264–2271.CrossRefGoogle Scholar
  15. 15.
    Nikulin S.V., Knyazev E.N., Gerasimenko T.N., Shilin S.A., Gazizov I.N., Zakharova G.S., Poloznikov A.A., Shkurnikov M.Yu. 2018. Non-invasive evaluation of extracellular matrix formation in the intestinal epithelium. Bull. Exp. Biol. Med. 166 (1), 35–38.CrossRefGoogle Scholar
  16. 16.
    Nikulin S.V., Knyazev E.N., Poloznikov A.A., Shilin S.A., Gazizov I.N., Zakharova G.S., Gerasimenko T.N. 2018. Expression of SLC30A10 and SLC23A3 transporter mRNAs in Caco-2 cells correlates with an increase in the area of the apical membrane. Mol. Biol. (Moscow). 52 (4), 577–582.CrossRefGoogle Scholar
  17. 17.
    Shoar Abouzari M.R., Berkemeier F., Schmitz G., Wilmer D. 2009. On the physical interpretation of constant phase elements. Solid State Ionics. 180, 922–927.CrossRefGoogle Scholar
  18. 18.
    Thirumoorthy N. 2007. Metallothionein: An overview. World J. Gastroenterol. 13, 993.CrossRefGoogle Scholar
  19. 19.
    Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., Adam V., Kizek R. 2013. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 14, 6044–6066.CrossRefGoogle Scholar
  20. 20.
    Furukawa S., Usuda K., Abe M., Hayashi S., Ogawa I. 2008. Histological expression of metallothionein in the developing rat placenta. J. Toxicol. Pathol. 21, 223–227.CrossRefGoogle Scholar
  21. 21.
    Lau J.C., Joseph M.G., Cherian M.G. 1998. Role of placental metallothionein in maternal to fetal transfer of cadmium in genetically altered mice. Toxicology. 127, 167–178.CrossRefGoogle Scholar
  22. 22.
    Andrews G.K., Geiser J. 1999. Expression of the mouse metallothionein-I and -II genes provides a reproductive advantage during maternal dietary zinc deficiency. J. Nutr. 129, 1643–1648.CrossRefGoogle Scholar
  23. 23.
    Ronco A.M., Arguello G., Suazo M., Llanos M.N. 2005. Increased levels of metallothionein in placenta of smokers. Toxicology. 208, 133–139.CrossRefGoogle Scholar
  24. 24.
    Benitez M.A., Mendez-Armenta M., Montes S., Rembao D., Sanin L.H., Rios C. 2009. Mother-fetus transference of lead and cadmium in rats: Involvement of metallothionein. Histol. Histopathol. 24, 1523–1530.Google Scholar
  25. 25.
    Waalkes M.P., Poisner A.M., Wood G.W., Klaassen C.D. 1984. Metallothionein-like proteins in human placenta and fetal membranes. Toxicol. Appl. Pharmacol. 74, 179–184.CrossRefGoogle Scholar
  26. 26.
    Goyer R.A., Haust M.D., Cherian M.G. 1992. Cellular localization of metallothionein in human term placenta. Placenta. 13, 349–355.CrossRefGoogle Scholar
  27. 27.
    Vargas A., Thiery M., Lafond J., Barbeau B. 2012. Transcriptional and functional studies of human endogenous retrovirus envelope EnvP(b) and EnvV genes in human trophoblasts. Virology. 425, 1–10.CrossRefGoogle Scholar
  28. 28.
    Azar C., Valentine M., Trausch-Azar J., Druley T., Nelson D.M., Schwartz A.L. 2018. RNA-Seq identifies genes whose proteins are transformative in the differentiation of cytotrophoblast to syncytiotrophoblast, in human primary villous and BeWo trophoblasts. Sci. Rep. 8, 5142.CrossRefGoogle Scholar
  29. 29.
    Borges M., Bose P., Frank H.-G., Kaufmann P., Pötgens A.J.G. 2003. A two-colour fluorescence assay for the measurement of syncytial fusion between trophoblast-derived cell lines. Placenta. 24, 959–964.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. V. Nikulin
    • 1
    • 2
    Email author
  • E. N. Knyazev
    • 1
  • T. N. Gerasimenko
    • 1
  • S. A. Shilin
    • 1
  • I. N. Gazizov
    • 1
  • G. S. Zakharova
    • 1
  • A. A. Poloznikov
    • 3
  • D. A. Sakharov
    • 1
  1. 1.OOO SRC BioclinicumMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia
  3. 3.National Medical Research Radiological Center, Ministry of Health of the Russian FederationObninskRussia

Personalised recommendations