Molecular Biology

, Volume 53, Issue 3, pp 346–353 | Cite as

Relative Efficiency of Transcription Factor Binding to Allelic Variants of Regulatory Regions of Human Genes in Immunoprecipitation and Real-Time PCR

  • N. A. Mitkin
  • K.V. Korneev
  • A. M. Gorbacheva
  • D. V. KuprashEmail author


The efficiency at which specific transcription factors interact with DNA may vary in the presence of single nucleotide polymorphisms (SNPs), and the variation provides an important mechanism that regulates expression of human genes and contributes to the individual susceptibility to various diseases. Ample genetic and epigenetic data make it possible to predict both functional polymorphic variants and the transcription factors whose binding they affect. However, predictions of the kind require experimental verification. An original method developed for the purpose includes immunoprecipitation of DNA–protein complexes, followed by quantification of the bound DNA by real-time PCR. The method does not require chemical modification of the DNA probes and yield reproducible results with total nuclear extracts from cultured human cells.


immunoprecipitation DNA–protein interactions transcription factors 



  1. 1.
    Slattery M., Zhou T., Yang L., Dantas Machado A.C., Gordân R., Rohs R. 2014. Absence of a simple code: How transcription factors read the genome. Trends Biochem. Sci. 39, 381–399.CrossRefGoogle Scholar
  2. 2.
    Deplancke B., Alpern D., Gardeux V. 2016. The genetics of transcription factor DNA binding variation. Cell. 166, 538–554.CrossRefGoogle Scholar
  3. 3.
    Albert F.W., Kruglyak L. 2015. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 16, 197–212.CrossRefGoogle Scholar
  4. 4.
    Schmiedel B.J., Singh D., Madrigal A., Valdovino-Gonzalez A.G., White B.M., Zapardiel-Gonzalo J., Ha B., Altay G., Greenbaum J.A., McVicker G., Seumois G., Rao A., Kronenberg M., Peters B., Vijayanand P. 2018. Impact of genetic polymorphisms on human immune cell gene expression. Cell. 175, 1701–1715.CrossRefGoogle Scholar
  5. 5.
    Goris A., Pauwels I., Dubois B. 2012. Progress in multiple sclerosis genetics. Curr. Genomics. 13, 646–663.CrossRefGoogle Scholar
  6. 6.
    Ward L.D., Kellis M. 2016. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 44, D877–D881.CrossRefGoogle Scholar
  7. 7.
    McLaren W., Gil L., Hunt S.E., Riat H.S., Ritchie G.R.S., Thormann A., Flicek P., Cunningham F. 2016. The ensembl variant effect predictor. Genome Biol. 17, 122.CrossRefGoogle Scholar
  8. 8.
    Visscher P.M., Wray N.R., Zhang Q., Sklar P., McCarthy M.I., Brown M.A., Yang J. 2017. 10 Years of GWAS discovery: Biology, function, and translation. Am. J. Hum. Genet. 101, 5–22.CrossRefGoogle Scholar
  9. 9.
    Carey M.F., Peterson C.L., Smale S.T. 2012. Confirming the functional importance of a protein–DNA interaction. Cold Spring Harb. Protoc. 2012, 733–757.Google Scholar
  10. 10.
    De Gobbi M., Viprakasit V., Hughes J.R., Fisher C., Buckle V.J., Ayyub H., Gibbons R.J., Vernimmen D., Yoshinaga Y., De Jong P., Cheng J.F., Rubin E.M., Wood W.G., Bowden D., Higgs D.R. 2006. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science. 312, 1215–1217.CrossRefGoogle Scholar
  11. 11.
    Musunuru K., Strong A., Frank-Kamenetsky M., Lee N.E., Ahfeldt T., Sachs K.V., Li X., Li H., Kuperwasser N., Ruda V.M., Pirruccello J.P., Muchmore B., Prokunina-Olsson L., Hall J.L., Schadt E.E., et al. 2010. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 466, 714–719.CrossRefGoogle Scholar
  12. 12.
    Awah C.U., Tamm S., Hedtfeld S., Steinemann D., Tümmler B., Tsiavaliaris G., Stanke F. 2016. Mechanism of allele specific assembly and disruption of master regulator transcription factor complexes of NF-KBp50, NF-KBp65 and HIF1a on a non-coding FAS SNP. Biochim. Biophys. Acta – Gene Regul. Mech. 1859, 1411–1428.CrossRefGoogle Scholar
  13. 13.
    Soldner F., Stelzer Y., Shivalila C.S., Abraham B.J., Latourelle J.C., Barrasa M.I., Goldmann J., Myers R.H., Young R.A., Jaenisch R. 2016. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature. 39, 381–399.Google Scholar
  14. 14.
    Gupta R.M., Hadaya J., Trehan A., Zekavat S.M., Roselli C., Klarin D., Emdin C.A., Hilvering C.R.E., Bianchi V., Mueller C., Khera A. V., Ryan R.J.H., Engreitz J.M., Issner R., Shoresh N., et al. 2017. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell. 170, 522–533.CrossRefGoogle Scholar
  15. 15.
    Fried M., Crothers D.M. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525.CrossRefGoogle Scholar
  16. 16.
    Hellman L.M., Fried M.G. 2007. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2, 1849.CrossRefGoogle Scholar
  17. 17.
    Adams C., Fried M.G. 2007. Protein Interactions: Biophysical Approaches for the Study of Multicomponent Systems. New York: Springer.Google Scholar
  18. 18.
    Singh B., Nath S.K. 2019. Identification of proteins interacting with single nucleotide polymorphisms (SNPs) by DNA pull-down assay. In: Electrophoretic Separation of Proteins. New York: Humana Press, pp. 355–362.Google Scholar
  19. 19.
    Hellman L.M., Fried M.G. 2007. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat. Protoc. 2, 1849–1861.CrossRefGoogle Scholar
  20. 20.
    Galas D.J., Schmitz A. 1978. DNAase footprinting a simple method for the detection of protein–DNA binding specificity. Nucleic Acids Res. 5, 3157–3170.CrossRefGoogle Scholar
  21. 21.
    Hesselberth J.R., Chen X., Zhang Z., Sabo P.J., Sandstrom R., Reynolds A.P., Thurman R.E., Neph S., Kuehn M.S., Noble W.S., Fields S., Stamatoyannopoulos J.A. 2009. Global mapping of protein–DNA interactions in vivo by digital genomic footprinting. Nat. Methods. 6, 283.CrossRefGoogle Scholar
  22. 22.
    Shcherbakova I., Mitra S., Beer R.H., Brenowitz M. 2006. Fast Fenton footprinting: A laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res. 34, e48–e48.CrossRefGoogle Scholar
  23. 23.
    Woodbury C.P., von Hippel P.H. 1983. On the determination of deoxyribonucleic acid–protein interaction parameters using the nitrocellulose filter-binding assay. Biochemistry. 22, 4730–4737.CrossRefGoogle Scholar
  24. 24.
    Sanger F., Coulson A.R., Hong G.F., Hill D.F., Petersen G.B. 1982. Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162, 729–773.CrossRefGoogle Scholar
  25. 25.
    Radding C.M., Beattie K.L., Holloman W.K., Wiegand R.C. 1977. Uptake of homologous single-stranded fragments by superhelical DNA: 4. Branch migration. J. Mol. Biol. 116, 783–803.CrossRefGoogle Scholar
  26. 26.
    Oehler S., Alex R., Barker A. 1999. Is nitrocellulose filter binding really a universal assay for protein–DNA interactions? Anal. Biochem. 268, 330–336.CrossRefGoogle Scholar
  27. 27.
    Mukherjee S., Berger M.F., Jona G., Wang X.S., Muzzey D., Snyder M., Young R.A., Bulyk M.L. 2004. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat. Genet. 36, 1331–1339.CrossRefGoogle Scholar
  28. 28.
    Berger M.F., Philippakis A.A., Qureshi A.M., He F.S., Estep P.W., Bulyk M.L. 2006. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat. Biotechnol. 24, 1429.CrossRefGoogle Scholar
  29. 29.
    Siggers T., Chang A.B., Teixeira A., Wong D., Williams K.J., Ahmed B., Ragoussis J., Udalova I.A., Smale S.T., Bulyk M.L. 2011. Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding. Nat. Immunol. 13, 95.CrossRefGoogle Scholar
  30. 30.
    Zasedateleva O.A., Vasiliskov V.A., Surzhikov S.A., Sazykin A.Y., Putlyaeva L. V., Schwarz A.M., Kuprash D.V., Rubina A.Y., Barsky V.E., Zasedatelev A.S. 2014. UV fluorescence of tryptophan residues effectively measures protein binding to nucleic acid fragments immobilized in gel elements of microarrays. Biotechnol. J. 9, 1074–1080.CrossRefGoogle Scholar
  31. 31.
    Fordyce P.M., Gerber D., Tran D., Zheng J., Li H., Derisi J.L., Quake S.R. 2010. De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat. Biotechnol. 28, 970–975.CrossRefGoogle Scholar
  32. 32.
    Le D.D., Shimko T.C., Aditham A.K., Keys A.M., Longwell S.A., Orenstein Y., Fordyce P.M. 2018. Comprehensive, high-resolution binding energy landscapes reveal context dependencies of transcription factor binding. Proc. Natl. Acad. Sci. U. S. A. 115, E3702–E3711.CrossRefGoogle Scholar
  33. 33.
    Gilmour D.S., Lis J.T. 1984. Detecting protein-DNA interactions in vivo: Distribution of RNA polymerase on specific bacterial genes. Proc. Natl. Acad. Sci. U. S. A. 81, 4275–4279.CrossRefGoogle Scholar
  34. 34.
    Solomon M.J., Larsen P.L., Varshavsky A. 1988. Mapping proteinDNA interactions in vivo with formaldehyde: Evidence that histone H4 is retained on a highly transcribed gene. Cell. 53, 937–947.CrossRefGoogle Scholar
  35. 35.
    Mardis E.R. 2007. ChIP-seq: welcome to the new frontier. Nat. Methods. 4, 613–614.CrossRefGoogle Scholar
  36. 36.
    Park P.J. 2009. ChIP-seq: Advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669.CrossRefGoogle Scholar
  37. 37.
    Collas P. 2010. The current state of chromatin immunoprecipitation. Mol. Biotechnol. 45, 87–100.CrossRefGoogle Scholar
  38. 38.
    Buck M.J., Lieb J.D. 2004. ChIP-chip: Considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics. 83, 349–360.CrossRefGoogle Scholar
  39. 39.
    Adli M., Bernstein B.E. 2011. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat. Protoc. 6, 1656.CrossRefGoogle Scholar
  40. 40.
    Tompa M., Li N., Bailey T.L., Church G.M., De Moor B., Eskin E., Favorov A.V., Frith M.C., Fu Y., Kent W.J., Makeev V.J., Mironov A.A., Noble W.S., Pavesi G., Pesole G., et al. 2005. Assessing computational tools for the discovery of transcription factor binding sites. Nat. Biotechnol. 23, 137–144.CrossRefGoogle Scholar
  41. 41.
    Jothi R., Cuddapah S., Barski A., Cui K., Zhao K. 2008. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res. 36, 5221–5231.CrossRefGoogle Scholar
  42. 42.
    Wong D., Teixeira A., Oikonomopoulos S., Humburg P., Lone I.N., Saliba D., Siggers T., Bulyk M., Angelov D., Dimitrov S., Udalova I.A., Ragoussis J. 2011. Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biol. 12, R70.CrossRefGoogle Scholar
  43. 43.
    Tone Y., Furuuchi K., Kojima Y., Tykocinski M.L., Greene M.I., Tone M. 2008. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194.CrossRefGoogle Scholar
  44. 44.
    Wu K.K. 2006. Analysis of protein-DNA binding by streptavidin-agarose pulldown. In: Gene Mapping, Discovery, and Expression. New York: Humana Press, 281–290.Google Scholar
  45. 45.
    Mitkin N.A., Muratova A.M., Schwartz A.M., Kuprash D.V. 2016. The A allele of the single-nucleotide polymorphism rs630923 creates a binding site for MEF2C resulting in reduced cxcr5 promoter activity in B-cell lymphoblastic cell lines. Front. Immunol. 7, 515.CrossRefGoogle Scholar
  46. 46.
    Vorontsov I.E., Kulakovskiy I. V., Khimulya G., Nikolaeva D.D., Makeev V.J. 2015. PERFECTOS-APE: Predicting regulatory functional effect of SNPs by approximate P-value estimation. Proc. Bioinforma. 2015—6th Int. Conf. Bioinform. Model. Methods Algorithms. 1, 102–108.Google Scholar
  47. 47.
    Kulakovskiy I.V., Vorontsov I.E., Yevshin I.S., Sharipov R.N., Fedorova A.D., Rumynskiy E.I., Medvedeva Y.A., Magana-Mora A., Bajic V.B., Papatsenko D.A., Kolpakov F.A., Makeev V.J. 2018. HOCOMOCO: Towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 46, D252–D259.CrossRefGoogle Scholar
  48. 48.
    Khan A., Fornes O., Stigliani A., Gheorghe M., Castro-Mondragon J.A., Van Der Lee R., Bessy A., Chèneby J., Kulkarni S.R., Tan G., Baranasic D., Arenillas D.J., Sandelin A., Vandepoele K., Lenhard B., et al. 2018. JASPAR 2018: Update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266.CrossRefGoogle Scholar
  49. 49.
    Jagannathan V., Roulet E., Delorenzi M., Bucher P. 2006. HTPSELEX—a database of high-throughput SELEX libraries for transcription factor binding sites. Nucleic Acids Res. 34, D90–D94.CrossRefGoogle Scholar
  50. 50.
    Carninci P., Kasukawa T., Katayama S., Gough J., Frith M.C., Maeda N., Oyama R., Ravasi T., Lenhard B., Wells C., Kodzius R., Shimokawa K., Bajic V.B., Brenner S.E., Batalov S., et al. 2005. Molecular biology: The transcriptional landscape of the mammalian genome. Science. 309, 1559–1563.CrossRefGoogle Scholar
  51. 51.
    Barretina J., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehár J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., et al. 2012. The cancer cell line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483, 603.CrossRefGoogle Scholar
  52. 52.
    Swanson B.J., Jäck H.M., Lyons G.E. 1998. Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol. Immunol. 35, 445–458.CrossRefGoogle Scholar
  53. 53.
    Legler D.F., Loetscher M., Roos R.S., Clark-Lewis I., Baggiolini M., Moser B. 1998. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 187, 655–660.CrossRefGoogle Scholar
  54. 54.
    Bartel S., Schulz N., Alessandrini F., Schamberger A.C., Pagel P., Theis F.J., Milger K., Noessner E., Stick S.M., Kicic A., Eickelberg O., Freishtat R.J., Krauss-Etschmann S. 2017. Pulmonary microRNA profiles identify involvement of Creb1 and Sec14l3 in bronchial epithelial changes in allergic asthma. Sci. Rep. 7, 46026.CrossRefGoogle Scholar
  55. 55.
    Lloyd C.M. 2010. IL-33 family members and asthma – bridging innate and adaptive immune responses. Curr. Opin. Immunol. 22, 800–806.CrossRefGoogle Scholar
  56. 56.
    Gorbacheva A., Korneev K., Kuprash D., Mitkin N. 2018. The Risk G allele of the single-nucleotide polymorphism rs928413 creates a CREB1-binding site that activates IL33 Promoter in lung epithelial cells. Int. J. Mol. Sci. 19, 2911.CrossRefGoogle Scholar
  57. 57.
    Gorbacheva A.M., Kuprash D.V., Mitkin N.A. 2018. Glucocorticoid receptor binding inhibits an intronic IL33 enhancer and is disrupted by rs4742170 (T) allele associated with specific wheezing phenotype in early childhood. Int. J. Mol. Sci. 19, 3956.CrossRefGoogle Scholar
  58. 58.
    Coordinators. 2013. Database resources of the national center for biotechnology information. Nucleic Acids Res. 41, D8.Google Scholar
  59. 59.
    Hasson S.A., Kane L.A., Yamano K., Huang C.H., Sliter D.A., Buehler E., Wang C., Heman-Ackah S.M., Hessa T., Guha R., Martin S.E., Youle R.J. 2013. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 504, 291.CrossRefGoogle Scholar
  60. 60.
    Jubb A.M., Chalasani S., Frantz G.D., Smits R., Grabsch H.I., Kavi V., Maughan N.J., Hillan K.J., Quirke P., Koeppen H. 2006. Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene. 25, 3445.CrossRefGoogle Scholar
  61. 61.
    Mitkin N.A., Muratova A.M., Korneev K.V., Pavshintsev V.V., Rumyantsev K.A., Vagida M.S., Uvarova A.N., Afanasyeva M.A., Schwartz A.M., Kuprash D.V. 2018. Protective C allele of the single-nucleotide polymorphism rs1335532 is associated with strong binding of Ascl2 transcription factor and elevated CD58 expression in B-cells. Biochim. Biophys. ActaMol. Basis Dis. 1864, 3211–3220.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. A. Mitkin
    • 1
  • K.V. Korneev
    • 1
  • A. M. Gorbacheva
    • 1
    • 2
  • D. V. Kuprash
    • 1
    • 2
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Biological Faculty, Moscow State UniversityMoscowRussia

Personalised recommendations