Advertisement

Molecular Biology

, Volume 53, Issue 3, pp 460–469 | Cite as

Enzymatic Preparation of Modified DNA: Study of the Kinetics by Real-Time PCR

  • S. A. LapaEmail author
  • A. S. Pavlov
  • V. E. Kuznetsova
  • V. E. Shershov
  • M. A. Spitsyn
  • T. O. Guseinov
  • S. P. Radko
  • A. S. Zasedatelev
  • A. V. Lisitsa
  • A. V. Chudinov
STRUCTURAL AND FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • 13 Downloads

Abstract

The effects of modified deoxyuridine triphosphates (mod-dUTPs) with different substituents at the C5 position of the pyrimidine cycle on the kinetics of PCR with Taq and Vent (exo-) DNA polymerases are studied. Substituents in mod-dUTP include carboxamide group and groups that are part of the side chains of alanine, valine, leucine, phenylalanine, tryptophan, or tyrosine. For each mod-dUTP, the yields of the target product are measured with the full substitution of dTTP. A fragment of bacterial DNA with a certain nucleotide sequence and a synthetic combinatorial DNA library of random nucleotide sequences are used as templates for amplification. For each mod-dUTP–template–polymerase combination, the correlation between the amplification efficiencies and yields of the target product are investigated. PCR product accumulation curves are influenced by both the template used and the presence of a modified substrate. The catalytic activity of Taq polymerase is higher when mod-dUTPs with short aliphatic substituents are used and decreases when the derivatives with long aliphatic, phenyl, and indole substituents are utilized. Vent (exo-) polymerase is less sensitive to the chemical structure of mod-dUTP. The dynamic measuring of DNA accumulation may be useful for optimizing the temperature–time PCR profiles individually for each of the mod-dUTP. The derivatives may be used in combination with Vent (exo-) polymerase to obtain modified DNA sequences for the method of selection of modified aptamers (mod-SELEX).

Keywords:

deoxyuridine triphosphate modified nucleotides modified DNA real-time PCR amplification efficiency SELEX 

Notes

REFERENCES

  1. 1.
    Zhuo Z., Yu Y., Wang M., Li J., Zhang Z., Liu J., Wu X., Lu A., Zhang G., Zhang B. 2017. Recent advances in SELEX technology and aptamer applications in biomedicine. Int. J. Mol. Sci. 18, e2142.CrossRefGoogle Scholar
  2. 2.
    Lapa S.A., Chudinov A.V., Timofeev E.N. 2016. The toolbox for modified aptamers. Mol. Biotechnol. 58, 79–92.CrossRefGoogle Scholar
  3. 3.
    Gold L., Ayers D., Bertino J., Bock C., Bock A., Brody E.N., Carter J., Dalby A.B., Eaton B.E., Fitzwater T., Flather D., Forbes A., Foreman T., Fowler C., Gawande B., et al. 2010. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One. 5, e15004.CrossRefGoogle Scholar
  4. 4.
    Gold L. 2015. SELEX: How it happened and where it will go. J. Mol. Evol. 81, 140–143.CrossRefGoogle Scholar
  5. 5.
    Latham J.A., Johnson R., Toole J.J. 1994. The application of a modified nucleotide in aptamer selection: Novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine. Nucleic Acids Res. 22, 2817–2822.CrossRefGoogle Scholar
  6. 6.
    Davies D.R., Gelinas A.D., ZhangC., Rohloff J.C., Carter J.D., O’Connell D., Waugh S.M., Wolk S.K., Mayfield W.S., Burgin A.B., Edwards T.E., Stewart L.J., Gold L., Janjic N., Jarvis T.C. 2012. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl. Acad. Sci. U. S. A. 109, 19971–19976.CrossRefGoogle Scholar
  7. 7.
    Kopylov A.M., Spiridonova V.A. 2000. Combinatorial chemistry of nucleic acids: SELEX. Mol. Biol. (Moscow). 34 (6), 940–955.Google Scholar
  8. 8.
    Kuwahara M., Hanawa K,Ohsawa K, Kitagata R, Ozaki H, Sawai H. 2006. Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg. Med. Chem. 14, 2518–2526.CrossRefGoogle Scholar
  9. 9.
    Masud M.M., Kuwahara M., Ozaki H., Sawai H. 2004. Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX. Bioorg. Med. Chem. 12, 1111–1120.CrossRefGoogle Scholar
  10. 10.
    Lapa S.A., Romashova K.S., Spitsyn M.A., Shershov V.E., Kuznetsova V.E., Guseinov T.O., Zasedateleva O.A., Radko S.P., Timofeev E.N., Lisitsa A.V., Chudinov A.V. 2018. Preparation of modified combinatorial DNA libraries via emulsion PCR with subsequent strand separation. Mol. Biol. (Moscow). 52 (6), 854–864.CrossRefGoogle Scholar
  11. 11.
    Vaught J.D., Bock C., Carter J., Fitzwater T., Otis M., Schneider D., Rolando J., Vaugh S., Wilcox S.K., Eaton B.E. 2010. Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 132, 4141–4151.CrossRefGoogle Scholar
  12. 12.
    Tolle F., Wilke J., Wengel J., Mayer G. 2014. By-product formation in repetitive PCR amplification of DNA libraries during SELEX. PLoS One. 9, e114693.CrossRefGoogle Scholar
  13. 13.
    Chudinov A.V., Kiseleva Ya.Yu., Kuznetsova V.E., Shershov V.E., Spitsyn M.A., Guseinov T.O., Lapa S.A., Timofeev E.N., Archakov A.I., Lisitsa A.V., Radko S.P., Zasedatelev A.S. 2017. Structural and functional analysis of biopolymers and their complexes: Enzymatic synthesis of high-modified DNA. Mol. Biol. (Moscow). 51, 534–544.CrossRefGoogle Scholar
  14. 14.
    Mikhailovich V., Lapa S., Gryadunov D., Sobolev A., Strizhkov B., Chernyh N., Skotnikova O., Irtuganova O., Moroz A., Litvinov V., Vladimirskii M., Perelman M., Chernousova L., Erokhin V., Zasedatelev A., Mirzabekov A. 2001. Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips. J. Clin. Microbiol. 39, 2531–2540.CrossRefGoogle Scholar
  15. 15.
    Gryadunov D., Mikhailovich V., Lapa S., Roudinskii N., Donnikov M., Pan’kov S., Markova O., Zasedatelev A., Mirzabekov A., Kuz’min A., Chernousova L., Skotnikova O., Moroz A. 2005. Evaluation of hybridisation on oligonucleotide microarrays for analysis of drug-resistant Mycobacterium tuberculosis. Clin. Microbiol. Infect. 11, 531–539.CrossRefGoogle Scholar
  16. 16.
    Ramakers C., Ruijter J.M., Deprez R.H., Moorman A.F. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66.CrossRefGoogle Scholar
  17. 17.
    Peirson S.N., Butler J.N., Foster R.G. 2003. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 31, e73.CrossRefGoogle Scholar
  18. 18.
    Liu W., Saint D.A. 2002. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 302, 52–59.CrossRefGoogle Scholar
  19. 19.
    Ahmed M., Kim D.R. 2018. PCR: An R package for quality assessment, analysis and testing of qPCR data. Peer J. 6, e4473.CrossRefGoogle Scholar
  20. 20.
    Lapa S.A., Volkova O.S., Spitsyn M.A., Shershov V.E., Kuznetsova V.E., Guseinov T.O., Zasedatelev A.S., Chudinov A.V. 2019. Amplification efficiency and substrate properties of fluorescent-labeled deoxyuridine triphosphates in PCR with DNA polymerases devoid of 3′-5′ exonuclease activity. Russ. J. Bioorg. Chem. 45 (in press).Google Scholar
  21. 21.
    Ioannou A.K., Alexiadou D.K., Kouidou S.A., Voulgaropoulos A.N., Girousi S.T. 2010. Electroanalytical study of SYBR Green I and ethidium bromide intercalation in methylated and unmethylated amplicons. Anal. Chim. Acta. 657, 163–168.CrossRefGoogle Scholar
  22. 22.
    Mao F., Leung W.Y., Xin X. 2007. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 7, 76.CrossRefGoogle Scholar
  23. 23.
    Khan S.A., Sung K., Nawaz M.S.(2011. Detection of aacA-aphD, qacEδ1, marA, floR, and tetA genes from multidrug-resistant bacteria: Comparative analysis of real-time multiplex PCR assays using EvaGreen® and SYBR® Green I dyes. Mol. Cell. Probes. 25, 78–86.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. A. Lapa
    • 1
    Email author
  • A. S. Pavlov
    • 1
    • 2
  • V. E. Kuznetsova
    • 1
  • V. E. Shershov
    • 1
  • M. A. Spitsyn
    • 1
    • 2
  • T. O. Guseinov
    • 1
    • 2
  • S. P. Radko
    • 2
    • 3
  • A. S. Zasedatelev
    • 1
  • A. V. Lisitsa
    • 3
  • A. V. Chudinov
    • 1
    • 2
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.OOO IBMC-EcoBioPharmMoscowRussia
  3. 3.Orekhovich Institute of Biomedical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations