Advertisement

Molecular Biology

, Volume 53, Issue 3, pp 354–361 | Cite as

Mutational Profiling of Pediatric Myeloid Leukemia Subtypes without Clinically Significant Chromosomal Aberrations

  • L. G. Ghukasyan
  • G. S. Krasnov
  • O. V. Muravenko
  • L. V. Baidun
  • S. Z. Ibragimova
  • T. V. NasedkinaEmail author
GENOMICS. TRANSCRIPTOMICS
  • 12 Downloads

Abstract

The discovery of novel significant molecular and genetic markers is important for the diagnostics, prognosis, and therapy selection in hematological malignancies. Distinct cytogenetic aberrations leading to the formation of fusion genes are found in more than 40% of pediactric cases of acute myeloid leukemia (AML); however, the tumor cells in approximately 20% of these patients display cytogenetically normal karyotype (NK-AML). Here we present the analysis of the mutational profiles of leukemic cells collected from pediatric AML cases without known clinically significant chromosomal aberrations aimed at identifying AML specific markers. In 34 pediatric cases of different AML types, the coding regions of 26 genes involved in the AML pathogenesis were analyzed by massive parallel sequencing. Sequencing revealed the somatic mutations in genes that are involved in various intracellular signaling pathways, including the CEBPA, ETV, IDH1, JAK2, and NRAS genes. In addition, rare genetic variants were found in CUX1, FLT3, TET2, PTPN11, and NUP98 genes. This data may contribute to the understanding of the mechanisms of malignant cell transformation in the case of leukemogenesis.

Keywords:

massive parallel sequencing acute myeloid leukemia somatic mutations 

Notes

REFERENCES

  1. 1.
    Schuback H.L., Arceci R.J., Meshinchi S. 2013. Somatic characterization of pediatric acute myeloid leukemia using next-generation sequencing. Semin. Hematol. 50 (4), 325‒332.CrossRefGoogle Scholar
  2. 2.
    Grimwade D. 2012. The changing paradigm of prognostic factors in acute myeloid leukaemia. Best Pract. Res. Clin. Haematol. 25 (4), 419–425.CrossRefGoogle Scholar
  3. 3.
    Renneville A., Roumier C., Biggio V., Nibourel O., Boissel N., Fenaux P., Preudhomme C. 2008. Cooperating gene mutations in acute myeloid leukemia: A review of the literature. Leukemia. 22 (5), 915–931.CrossRefGoogle Scholar
  4. 4.
    Patel J.P., Gönen M., Figueroa M.E., Fernandez H., Sun Z., Racevskis J., Van Vlierberghe P., Dolgalev I., Thomas S., Aminova O., Huberman K., Cheng J., Viale A., Socci N.D., Heguy A., et al. 2012. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366 (12), 1079–1089.CrossRefGoogle Scholar
  5. 5.
    Döhner H., Estey E.H., Amadori S., Appelbaum F.R., Büchner T., Burnett A.K., Dombret H., Fenaux P., Grimwade D., Larson R.A., Lo-Coco F., Naoe T., Niederwieser D., Ossenkoppele G.J., Sanz M.A., et al. 2010. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 115 (3), 453–474.CrossRefGoogle Scholar
  6. 6.
    Schlenk R.F., Döhner K., Krauter J., Fröhling S., Corbacioglu A., Bullinger L., Habdank M., Späth D., Morgan M., Benner A., Schlegelberger B., Heil G., Ganser A., Döhner H. 2008. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358 (18), 1909–1918.CrossRefGoogle Scholar
  7. 7.
    Falini B., Mecucci C., Tiacci E., Alcalay M., Rosati R., Pasqualucci L., La Starza R., Diverio D., Colombo E., Santucci A., Bigerna B., Pacini R., Pucciarini A., Liso A., Vignetti M., et al. 2005. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352 (3), 254–266.CrossRefGoogle Scholar
  8. 8.
    Ozeki K., Kiyoi H., Hirose Y., Iwai M., Ninomiya M., Kodera Y., Miyawaki S., Kuriyama K., Shimazaki C., Akiyama H., Nishimura M., Motoji T., Shinagawa K., Takeshita A., Ueda R., et al. 2004. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood. 103 (5), 1901–1908.CrossRefGoogle Scholar
  9. 9.
    Nerlov C. 2004. C/EBPα mutations in acute myeloid leukaemias. Nat. Rev. Cancer. 4 (5), 394–400.CrossRefGoogle Scholar
  10. 10.
    Nasedkina T.V., Ikonnikova A.Yu., Tsaur G.A., Karateeva A.Yu., Amur Yu.I., Avdonina M.A., Karachunskii A.I., Zasedatelev A.S. 2016. Biological microchip for establishing the structure of fusion transcripts involving MLL in children with acute leukemia. Mol. Biol. (Moscow). 50 (6), 852–859.CrossRefGoogle Scholar
  11. 11.
    Taskesen E., Bullinger L., Corbacioglu A., Sanders M.A., Erpelinck C.A., Wouters B.J., van der Poel-van de Luytgaarde S.C., Damm F., Krauter J., Ganser A., Schlenk R.F., Löwenberg B., Delwel R., Döhner H., Valk P.J., Döhner K. 2011. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: Further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood. 117 (8), 2469–2475.CrossRefGoogle Scholar
  12. 12.
    Cagnetta A., Adamia S., Acharya C., Patrone F., Miglino M., Nencioni A., Gobbi M., Cea M. 2014. Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics. Leuk. Res. 38 (6), 649–659.CrossRefGoogle Scholar
  13. 13.
    Pastore F., Kling D., Hoster E., Dufour A., Konstandin N.P., Schneider S., Sauerland M.C., Berdel W.E., Buechner T., Woermann B., Braess J., Hiddemann W., Spiekermann K. 2014. Long-term follow-up of cytogenetically normal CEBPA-mutated AML. J. Hematol. Oncol. 7 (1), 55.CrossRefGoogle Scholar
  14. 14.
    Barjesteh van Waalwijk van Doorn-Khosrovani S., Spensberger D., de Knegt Y., Tang M., Löwenberg B., Delwel R. 2005. Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia. Oncogene. 24, 4129‒4137.Google Scholar
  15. 15.
    de Noronha T.R., Mitne-Neto M., Chauffaille M.L. 2017. Mutational profiling of acute myeloid leukemia with normal cytogenetics in Brazilian patients: The value of next-generation sequencing for genomic classification. J. Investig. Med. 65 (8), 1155‒1158.CrossRefGoogle Scholar
  16. 16.
    Hidalgo-López J.E., Kanagal-Shamanna R., Medei-ros L.J., Estrov Z., Yin C.C., Verstovsek S., Konoplev S., Jorgensen J.L., Mohammad M.M., Miranda R.N., Zhao C., Lee J., Zuo Z., Bueso-Ramos C.E. 2017. Morphologic and molecular characteristics of de novo AML with JAK2 V617F mutation. J. Natl. Compr. Canc. Netw. 15 (6), 790‒796.CrossRefGoogle Scholar
  17. 17.
    Johnson D.B., Smalley K.S., Sosman J.A. 2014. Molecular pathways: targeting NRAS in melanoma and acute myelogenous leukemia. Clin. Cancer Res. 20 (16), 4186–4192.CrossRefGoogle Scholar
  18. 18.
    Bacher U., Haferlach T., Schoch C., Kern W., Schnittger S. 2006. Implications of NRAS mutations in AML: A study of 2502 patients. Blood. 107 (10), 3847–3853.CrossRefGoogle Scholar
  19. 19.
    Berman J.N., Gerbing R.B., Alonzo T.A., Ho P.A., Miller K., Hurwitz C., Heerema N.A., Hirsch B., Raimondi S.C., Lange B., Franklin J.L., Gamis A., Meshinchi S. 2011. Prevalence and clinical implications of NRAS mutations in childhood AML: A report from the Children’s Oncology Group. Leukemia. 25 (6), 1039–1042.CrossRefGoogle Scholar
  20. 20.
    Marcucci G., Maharry K., Wu Y.Z., Radmacher M.D., Mrózek K., Margeson D., Holland K.B., Whitman S.P., Becker H., Schwind S., Metzeler K.H., Powell B.L., Carter T.H., Kolitz J.E., Wetzler M., et al. 2010. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: A Cancer and Leukemia Group B study. J. Clin. Oncol. 28 (14), 2348–2355.CrossRefGoogle Scholar
  21. 21.
    Chotirat S., Thongnoppakhun W., Wanachiwanawin W., Auewarakul C.U. 2015. Acquired somatic mutations of isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) in preleukemic disorders. Blood Cells Mol. Dis. 54 (3), 286–291.CrossRefGoogle Scholar
  22. 22.
    Paschka P., Schlenk R.F., Gaidzik V.I., Habdank M., Krönke J., Bullinger L., Späth D., Kayser S., Zucknick M., Götze K., Horst H.A., Germing U., Döhner H., Döhner K. 2010. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 28 (22), 3636–3643.CrossRefGoogle Scholar
  23. 23.
    Makishima H., Jankowska A.M., Tiu R.V., Szpurka H., Sugimoto Y., Hu Z., Saunthararajah Y., Guinta K., Keddache M.A., Putnam P., Sekeres M.A., Moli-terno A.R., List A.F., McDevitt M.A., Maciejewski J.P. 2010. Novel homo- and hemizygous mutations in EZH2 in myeloid malignancies. Leukemia. 24, 1799‒1804.CrossRefGoogle Scholar
  24. 24.
    Maheshwari M., Belmont J., Fernbach S., Ho T., Molinari L., Yakub I., Yu F., Combes A., Towbin J., Craigen W.J., Gibbs R. 2002. PTPN11 mutations in Noonan syndrome type I: Detection of recurrent mutations in exons 3 and 13. Hum. Mutat. 20 (4), 298‒304.CrossRefGoogle Scholar
  25. 25.
    Bodian D.L., McCutcheon J.N., Kothiyal P., Huddleston K.C., Iyer R.K., Vockley J.G., Niederhuber J.E. 2014. Germline variation in cancer-susceptibility genes in a healthy, ancestrally diverse cohort: implications for individual genome sequencing. PLoS One. 9 (4), e94554.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • L. G. Ghukasyan
    • 1
  • G. S. Krasnov
    • 1
  • O. V. Muravenko
    • 1
  • L. V. Baidun
    • 2
  • S. Z. Ibragimova
    • 3
  • T. V. Nasedkina
    • 1
    • 4
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Russian Children’s Clinical Hospital, Pirogov Russian National Research Medical UniversityMoscowRussia
  3. 3.Scientific Research Institute of Haematology and Blood TransfusionTashkentUzbekistan
  4. 4.Dmitry Rogachev National Medical and Research Center of Pediatric Haematology, Oncology and ImmunologyMoscowRussia

Personalised recommendations