Advertisement

Molecular Biology

, Volume 53, Issue 3, pp 470–474 | Cite as

An Overlap between Splicing Sites in RNA and Homo-Repeats in Human Proteins

  • O. V. GalzitskayaEmail author
  • G. S. Novikov
PROTEOMICS
  • 28 Downloads

Abstract

Proteins with homo-repeats of more than 4 amino acid residues in length were examined to understand whether some splicing sites in pre-mRNA may be attributed to homo-repeats in human proteins. The human proteome was found to contain a total of 404 proteins with homo-repeats that account for at least one splicing site in pre-mRNA. Pre-mRNA splicing sites were more often found in the C-terminal part (67%) than in the middle or N-terminal part of a homo-repeat. Ten homo-repeats were identified to have two splicing sites per repeat. The repeats were lysine homo-repeats in all but one case.

Keywords:

homo-repeat splicing disease disordered regions 

Notes

REFERENCES

  1. 1.
    Blencowe B.J. 2006. Alternative splicing: New insights from global analyses. Cell. 126 (1), 37–47.CrossRefGoogle Scholar
  2. 2.
    Buljan M., Chalancon G., Dunker A.K., Bateman A., Balaji S., Fuxreiter M., Babu M.M. 2013. Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr. Opin. Struct. Biol. 23 (3), 443–450.CrossRefGoogle Scholar
  3. 3.
    Buljan M., Chalancon G., Eustermann S., Wagner G.P., Fuxreiter M., Bateman A., Babu M.M. 2012. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol. Cell. 46 (6), 871–883.CrossRefGoogle Scholar
  4. 4.
    Jorda J., Xue B., Uversky V.N., Kajava A.V. 2010. Protein tandem repeats: The more perfect, the less structured. FEBS J. 277 (12), 2673–2682.CrossRefGoogle Scholar
  5. 5.
    Lobanov M.Y., Furletova E.I., Bogatyreva N.S., Roytberg M.A., Galzitskaya O.V. 2010. Library of disordered patterns in 3D protein structures. PLoS Comput. Biol. 6 (10), e1000958.CrossRefGoogle Scholar
  6. 6.
    Lobanov M.Y., Galzitskaya O.V. 2012. Occurrence of disordered patterns and homorepeats in eukaryotic and bacterial proteomes. Mol. Biosyst. 8 (1), 327–337.CrossRefGoogle Scholar
  7. 7.
    Lobanov M.Y., Galzitskaya O.V. 2011. Disordered patterns in clustered Protein Data Bank and in eukaryotic and bacterial proteomes. PLoS One. 6 (11), e27142.CrossRefGoogle Scholar
  8. 8.
    Lobanov M.Y., Galzitskaya O.V. 2015. How common is disorder? Occurrence of disordered residues in four domains of life. Int. J. Mol. Sci. 16 (8), 19490–19507.CrossRefGoogle Scholar
  9. 9.
    Gatchel J.R., Zoghbi H.Y. 2005. Diseases of unstable repeat expansion: Mechanisms and common principles. Nat. Rev. Genet. 6 (10), 743–755.CrossRefGoogle Scholar
  10. 10.
    La Spada A.R., Taylor J.P. 2010. Repeat expansion disease: Progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11 (4), 247–258.CrossRefGoogle Scholar
  11. 11.
    Usdin K. 2008. The biological effects of simple tandem repeats: Lessons from the repeat expansion diseases. Genome Res. 18 (7), 1011–1019.CrossRefGoogle Scholar
  12. 12.
    La Spada A.R. 1997. Trinucleotide repeat instability: Genetic features and molecular mechanisms. Brain Pathol. (Zurich). 7 (3), 943–963.CrossRefGoogle Scholar
  13. 13.
    Lobanov M.Y., Klus P., Sokolovsky I.V., Tartaglia G.G., Galzitskaya O.V. 2016. Non-random distribution of homo-repeats: Links with biological functions and human diseases. Sci. Rep. 6, 26941.CrossRefGoogle Scholar
  14. 14.
    Lobanov M.Yu., Bogatyreva N.S., Galzitskaya O.V. 2012. Occurrence of six-amino-acid motifs in three eukaryotic proteomes. Mol. Biol. (Moscow). 46 (1), 168–174.CrossRefGoogle Scholar
  15. 15.
    Neueder A., Landles C., Ghosh R., Howland D., Myers R.H., Faull R.L.M., Tabrizi S.J., Bates G.P. 2017. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci. Rep. 7 (1), 1307.CrossRefGoogle Scholar
  16. 16.
    Lobanov M.Y., Sokolovskiy I.V., Galzitskaya O.V. 2014. HRaP: Database of occurrence of HomoRepeats and patterns in proteomes. Nucleic Acids Res. 42 (Database issue), D273–D278.CrossRefGoogle Scholar
  17. 17.
    Yates A., Akanni W., Amode M.R., Barrell D., Billis K., Carvalho-Silva D., Cummins C., Clapham P., Fitzge-rald S., Gil L., Girón C.G., Gordon L., Hourlier T., Hunt S.E., Janacek S.H., et al. 2016. Ensembl 2016. Nucleic Acids Res. 44 (D1), D710–D716.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Protein Research, Russian Academy of SciencesPushchinoRussia
  2. 2.Nanotechnology Research and Education Center, St. Petersburg National Academic Research UniversitySt. PetersburgRussia

Personalised recommendations