Molecular Biology

, Volume 53, Issue 3, pp 371–378 | Cite as

A Group of Hypermethylated miRNA Genes in Breast Cancer and Their Diagnostic Potential

  • E. A. Filippova
  • V. I. Loginov
  • I. V. Pronina
  • D. S. Khodyrev
  • A. M. Burdennyy
  • T. P. Kazubskaya
  • E. A. BragaEmail author


miRNA genes play an important role in cancer pathogenesis, while they may be suppressed by hypermethylation. Here, we assess the diagnostic potential of a group of hypermethylated miRNA genes (MIR-124-1, MIR-124-3, MIR-125B-1, MIR-127, MIR-132, MIR-193a, and MIR-34b/c) in a representative set of 70 breast cancer samples and 17 breast tissue samples from deceased donors with no malignancies. For these seven genes, the methylation status is determined using the methylation-specific PCR. Methylation reached 26–76% in tumor specimens, 1‒27% in paired considered normal breast tissues, and 0–18% in breast tissue from deceased donors. By quantitative RT-PCR, reduced expression levels of the investigated miRNAs are detected, with a negative correlation of expression levels with gene hypermethylation. Combinations of three or four hypermethylation biomarkers, namely, MIR-124-1, MIR-125B-1, MIR-127, and MIR-34b/c are found suitable for breast cancer diagnostics; with sensitivity (76‒93%), specificity (88‒100%), and AUC (0.88‒0.94). Notably, the MIR-127 gene was hypermethylated only in the tumor samples of patients with metastases, and, therefore, should be tested as a marker of breast cancer dissemination. These findings may lead to improvement in the management of breast cancer.


breast cancer miRNA genes hypermethylation diagnostic markers metastasis marker MIR-127 



  1. 1.
    Llinàs-Arias P., Esteller M. 2017. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: An update. Open Biol. 7 (9). pii: 170152. CrossRefGoogle Scholar
  2. 2.
    Musavi Shenas M.H., Eghbal-Fard S., Mehrisofiani V., Abd Yazdani N., Rahbar Farzam O., Marofi F., Yousefi M. 2018. MicroRNAs and signaling networks involved in epithelial-mesenchymal transition. J. Cell. Physiol. Nov. 11.
  3. 3.
    Moutinho C., Esteller M. 2017. MicroRNAs and epigenetics. Adv. Cancer Res. 135, 189‒220. CrossRefGoogle Scholar
  4. 4.
    Stefansson O.A., Esteller M. 2013. Epigenetic modifications in breast cancer and their role in personalized medicine. Am. J. Pathol. 183, 1052‒1063. CrossRefGoogle Scholar
  5. 5.
    Bertoli G., Cava C., Castiglioni I. 2015. MicroRNA: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 5, 1122‒1143. CrossRefGoogle Scholar
  6. 6.
    Dey S. 2014. Preventing breast cancer in LMICs via screening and/or early detection: The real and the surreal. World J. Clin. Oncol. 5, 509–519. CrossRefGoogle Scholar
  7. 7.
    Zlokachestvennye novoobrazovaniya v Rossii v 2017 godu: zabolevaemost’ i smertnost’ (Malignant Neoplasms in Russia in 2017: Morbidity and Mortality). Eds. Kaprin A.D., Starinskii V.V., Petrova G.V. Moscow: MNIOI im. P.A. Gertsena Minzdrava Rossii.Google Scholar
  8. 8.
    Takahashi R., Miyazaki H., Ochiya T. 2015. The roles of microRNAs in breast cancer. Cancers (Basel). 7, 598‒616. CrossRefGoogle Scholar
  9. 9.
    Khordadmehr M., Shahbazi R., Ezzati H., Jigari-Asl F., Sadreddini S., Baradaran B. 2018. Key microRNAs in the biology of breast cancer: Emerging evidence in the last decade. J. Cell. Physiol.
  10. 10.
    Campos-Parra A.D., Mitznahuatl G.C., Pedroza-Torres A., Romo R.V., Reyes F.IP., López-Urrutia E., Pérez-Plasencia C. 2017. Micro-RNAs as potential predictors of response to breast cancer systemic therapy: Future clinical implications. Int. J. Mol. Sci. 18 (6). pii: E1182. CrossRefGoogle Scholar
  11. 11.
    Vrba L., Muñoz-Rodríguez J.L., Stampfer M.R., Futscher B.W. 2013. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One. 8 (1), e54398. CrossRefGoogle Scholar
  12. 12.
    Loginov V.I., Rykov S.V., Fridman M.V., Braga E.A. 2015. Methylation of miRNA ganas and oncogenesis. Biochemistry (Moscow). 80 (2), 145‒162.Google Scholar
  13. 13.
    Kunej T., Godnic I., Ferdin J., Horvat S., Dovc P., Calin G.A. 2011. Epigenetic regulation of microRNAs in cancer: An integrated review of literature. Mutat. Res. 717, 77‒84. CrossRefGoogle Scholar
  14. 14.
    Piletič K., Kunej T. 2016. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 90, 2405‒2419. CrossRefGoogle Scholar
  15. 15.
    Loginov V.I., Burdennyy A.M., Pronina I.V., Khoko-nova V.I., Kurevljov S.V., Kazubskaya T.P., Kushlinskii N.E., Braga E.A. 2016. Novel miRNA genes hypermethylated in breast cancer. Mol. Biol. (Moscow). 50 (5), 705‒709.CrossRefGoogle Scholar
  16. 16.
    Pronina I.V., Loginov V.I., Burdennyy A.M., Fridman M.V., Senchenko V.N., Kazubskaya T.P., Kushlinskii N.E., Dmitriev A.A., Braga E.A. 2017. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene. 604, 1‒8. CrossRefGoogle Scholar
  17. 17.
    Loginov V.I., Burdennyi A.M., Filippova E.A., Pronina I.V., Kazubskaya T.P., Kushlinsky D.N., Ermilova V.D., Rykov S.V., Khodyrev D.S., Braga E.A. 2018. Hypermethylation of miR-107, miR-130b, miR-203a, miR-1258 genes associated with ovarian cancer development and metastasis. Mol. Biol. (Moscow). 52, 801–809.CrossRefGoogle Scholar
  18. 18.
    Loginov V.I., Pronina I.V., Burdennyi A.M., Filippova E.A., Kazubskaya T.P., Kushlinsky D.N., Utkin D.O., Khodyrev D.S., Kushlinskii N.E., Dmitriev A.A., Braga E.A. 2018. Novel miRNA genes deregulated by aberrant methylation in ovarian carcinoma are involved in metastasis. Gene. 662, 28‒36. CrossRefGoogle Scholar
  19. 19.
    Braga E.A., Loginov V.I., Filippova E.A., Burdennyi A.M., Pronina I.V., Kazubskaya T.P., Khodyrev D.S., Utkin D.O., Kushlinskii D.N., Adamyan L.V., Kushlinskii N.E.2018. Diagnostic value of a group of microRNA genes hypermethylated in ovarian carcinoma. Bull. Exp. Biol. Med. 166 (2), 253‒256.CrossRefGoogle Scholar
  20. 20.
    World Medical Association. 2013. Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. J. Am. Med. Assoc. 310, 2191–2194.Google Scholar
  21. 21.
    International Union against Cancer. 2010.TNM Classification of Malignant Tumours, 7th ed. Eds. Sobin L.H., Gospodarowicz M.K., Wittekind Ch. Hoboken, NJ: Wiley-Blackwell. Scholar
  22. 22.
    WHO Classification of Tumours of Female Reproductive Organs, 4th ed. 2014. Eds. Kurman R.J., Carcangiu M.L., Herrington C.S., Young R.H. Lyon: IARC Press.Google Scholar
  23. 23.
    Pronina I.V., Loginov V.I., Khodyrev D.S., Kazubskaya T.P., Braga E.A. 2012. RASSF1A expression level in primary epithelial tumors of various locations. Mol. Biol. (Moscow). 46 (2), 260‒268. CrossRefGoogle Scholar
  24. 24.
    Göksülük D., Korkmaz S., Zararsiz G., Karaagaoglu A.E. 2016. EasyROC: An interactive Web-tool for ROC curve analysis using R language environment. The R. J. 8, 213‒230.CrossRefGoogle Scholar
  25. 25.
    Wang Y., Chen L., Wu Z., Wang M., Jin F., Wang N., Hu X., Liu Z., Zhang C.Y., Zen K., Chen J., Liang H., Zhang Y., Chen X. 2016. miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer. 16(1), 826. PMID:27842510. CrossRefGoogle Scholar
  26. 26.
    Li Y., Wang Y., Fan H., Zhang Z., Li N. 2018. miR-125b-5p inhibits breast cancer cell proliferation, migration and invasion by targeting KIAA1522. Biochem. Biophys. Res. Commun. 504, 277‒282. CrossRefGoogle Scholar
  27. 27.
    Chen J., Wang M., Guo M., Xie Y., Cong Y.S. 2013. miR-127 regulates cell proliferation and senescence by targeting BCL6. PLoS One. 8 (11), e80266. CrossRefGoogle Scholar
  28. 28.
    Zhang Z.G., Chen W.X., Wu Y.H., Liang H.F., Zhang B.X. 2014. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1. Biochem. Biophys. Res. Commun. 454, 109‒114. CrossRefGoogle Scholar
  29. 29.
    Liu X., Feng J., Tang L., Liao L., Xu Q., Zhu S. 2015. The regulation and function of miR-21-FOXO3a-miR-34b/c signaling in breast cancer. Int. J. Mol. Sci. 16, 3148‒3162. CrossRefGoogle Scholar
  30. 30.
    Xie F., Hosany S., Zhong S., Jiang Y., Zhang F., Lin L., Wang X., Gao S., Hu X. 2017. MicroRNA-193a inhibits breast cancer proliferation and metastasis by downregulating WT1. PLoS One. 12 (10), e0185565. CrossRefGoogle Scholar
  31. 31.
    Zhang L., Chen X., Liu B., Han J. 2018. MicroRNA-124-3p directly targets PDCD6 to inhibit metastasis in breast cancer. Oncol. Lett. 15, 984‒990. Google Scholar
  32. 32.
    Wang S., Li H., Wang J., Wang D., Yao A., Li Q. 2014. Prognostic and biological significance of microRNA-127 expression in human breast cancer. Dis. Markers. 2014, 401986.
  33. 33.
    Huang Z., Zhu D., Wu L., He M., Zhou X., Zhang L., Zhang H., Wang W., Zhu J., Cheng W., Chen Y., Fan Y., Qi L., Yin Y., Zhu W., et al. 2017. Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer. Cancer Epidemiol. Biomarkers Prev. 26, 188–196. CrossRefGoogle Scholar
  34. 34.
    Urquidi V., Netherton M., Gomes-Giacoia E., Serie D.J., Eckel-Passow J., Rosser C.J., Goodison S. 2016. A microRNA biomarker panel for the non-invasive detection of bladder cancer. Oncotarget. 7, 86290‒86299. Google Scholar
  35. 35.
    Daniel R., Wu Q., Williams V., Clark G., Guruli G., Zehner Z. 2017. A panel of microRNAs as diagnostic biomarkers for the identification of prostate cancer. Int. J. Mol. Sci. 18 (6). pii: E1281. CrossRefGoogle Scholar
  36. 36.
    Zhu M., Huang Z., Zhu D., Zhou X., Shan X., Qi L.W., Wu L., Cheng W., Zhu J., Zhang L., Zhang H., Chen Y., Zhu W., Wang T., Liu P. 2017. A panel of microRNA signature in serum for colorectal cancer diagnosis. Oncotarget. 8, 17081‒17091. Google Scholar
  37. 37.
    Zhang H., Zhu M., Shan X., Zhou X., Wang T., Zhang J., Tao J., Cheng W., Chen G., Li J., Liu P., Wang Q., Zhu W. 2018. A panel of seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene. Nov. 17. pii: S0378-1119(18)31197-1.
  38. 38.
    Chang Y.A., Weng S.L., Yang S.F., Chou C.H., Huang W.C., Tu S.J., Chang T.H., Huang C.N., Jong Y.J., Huang H.D. 2018. A three-microRNAsignature as a potential biomarker for the early detection of oral cancer. Int. J. Mol. Sci. 19 (3). pii: E758. CrossRefGoogle Scholar
  39. 39.
    Shimizu T., Suzuki H., Nojima M., Kitamura H., Yamamoto E., Maruyama R., Ashida M., Hatahira T., Kai M., Masumori N., Tokino T., Imai K., Tsukamoto T., Toyota M. 2013. Methylation of a panel of microRNA genes is a novel biomarker for detection of bladder cancer. Eur. Urol. 63, 1091‒1100. CrossRefGoogle Scholar
  40. 40.
    Toiyama Y., Okugawa Y., Tanaka K., Araki T., Uchida K., Hishida A., Uchino M., Ikeuchi H., Hirota S., Kusunoki M., Boland C.R., Goel A. 2017. A panel of methylated microRNA biomarkers for identifying high-risk patients with ulcerative colitis-associated colorectal cancer. Gastroenterology. 153 (6), 1634‒1646. e8. CrossRefGoogle Scholar
  41. 41.
    Torres-Ferreira J., Ramalho-Carvalho J., Gomez A., Menezes F.D., Freitas R., Oliveira J., Antunes L., Bento M.J., Esteller M., Henrique R., Jerónimo C. 2017. MiR-193b promoter methylation accurately detects prostate cancer in urine sediments and miR-34b/c or miR-129-2 promoter methylation define subsets of clinically aggressive tumors. Mol. Cancer. 16, 26.CrossRefGoogle Scholar
  42. 42.
    Rykov S.V., Khodyrev D.S., Pronina I.V., Kazubskaya T.P., Loginov V.I., Braga E.A. 2013. Novel miRNA genes methylated in lung tumors. Russ. J. Genet. 49 (7), 782‒787. CrossRefGoogle Scholar
  43. 43.
    Loginov V.I., Beresneva E.V., Kazubskaya T.P., Braga E.A., Karpukhin A.V. 2017. Methylation of 10 miRNA genes in clear cell renal cell carcinoma and their diagnostic value. Cancer Urology. 13, 27‒33. CrossRefGoogle Scholar
  44. 44.
    Zhao X., Duan Z., Liu X., Wang B., Wang X., He J., Yao Z., Yang J. 2013). MicroRNA-127 is downregulated by Tudor-SN protein and contributes to metastasis and proliferation in breast cancer cell line MDA-MB-231. Anat. Rec. (Hoboken). 296, 1842‒1849. CrossRefGoogle Scholar
  45. 45.
    Huan L., Bao C., Chen D., Li Y., Lian J., Ding J., Huang S., Liang L., He X. 2016. MicroRNA-127-5p targets the biliverdin reductase B/nuclear factor-κB pathway to suppress cell growth in hepatocellular carcinoma cells. Cancer Sci. 107, 258‒266. CrossRefGoogle Scholar
  46. 46.
    Shi L., Wang Y., Lu Z., Zhang H., Zhuang N., Wang B., Song Z., Chen G., Huang C., Xu D., Zhang Y., Zhang W., Gao Y. 2017. miR-127 promotes EMT and stem-like traits in lung cancer through a feed-forward regulatory loop. Oncogene. 36, 1631‒1643. CrossRefGoogle Scholar
  47. 47.
    Alunni-Fabbroni M., Majunke L., Trapp E.K., Tzschaschel M., Mahner S., Fasching P.A., Fehm T., Schneeweiss A., Beck T., Lorenz R., Friedl T.W.P., Janni W., Rack B., SUCCESS Study Group. 2018. Wholeblood microRNAs as potential biomarkers in post-operative earlybreast cancer patients. BMC Cancer. 18 (1), 141. CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. A. Filippova
    • 1
  • V. I. Loginov
    • 1
    • 2
  • I. V. Pronina
    • 1
  • D. S. Khodyrev
    • 3
  • A. M. Burdennyy
    • 1
  • T. P. Kazubskaya
    • 4
  • E. A. Braga
    • 1
    • 2
    Email author
  1. 1.Institute of General Pathology and PathophysiologyMoscowRussia
  2. 2.Research Center of Medical GeneticsMoscowRussia
  3. 3.Federal Research Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Medico-Biological Agency of RussiaMoscowRussia
  4. 4.Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations