Advertisement

Molecular Biology

, Volume 53, Issue 3, pp 384–392 | Cite as

Regulation of m6A RNA Methylation and Its Effect on Myogenic Differentiation in Murine Myoblasts

  • J. N. Chen
  • Y. Chen
  • Y. Y. Wei
  • M. A. Raza
  • Q. Zou
  • X. Y. Xi
  • L. Zhu
  • G. Q. Tang
  • Y. Z. JiangEmail author
  • X. W. LiEmail author
MOLECULAR CELL BIOLOGY
  • 15 Downloads

Abstract

N6-methyladenosine (m6A) has been identified as a conserved epitranscriptomic modification of eukaryotic mRNAs, and plays important biological roles in the regulation of cellular metabolic processes. However, its role in myogenic differentiation is unclear. Here, we altered the m6A RNA methylation level by overexpression of METTL3, and explored the effect of m6A RNA methylation on myogenic differentiation of murine myoblasts in vitro. The m6A RNA methylation level is regulated by exogenous methylation inhibitor cycloleucine (Cyc) and methyl donor betaine (Bet). Therefore, chemical reagents of Cyc and Bet were used to test the regulatory effect of m6A RNA methylation on myogenic differentiation. Results showed that METTL3 and Bet positively regulated the m6A RNA methylation levels, and Cyc negatively regulated m6A RNA methylation levels. In addition, m6A methylation positively regulated myogenic differentiation in murine myoblasts. These findings provide insight in the mechanisms underlying the effect of m6A RNA methylation on myogenesis.

Keywords:

m6A RNA methylation METTL3 myogenic differentiation 

REFERENCES

  1. 1.
    Grosjean H. 2005. Modification and editing of RNA: Historical overview and important facts to remember. In: Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol. 12. Berlin-Heidelberg: Springer Verlag, pp. 1–22.Google Scholar
  2. 2.
    Batista P.J., Molinie B., Wang J. 2014. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 15, 707–719.CrossRefGoogle Scholar
  3. 3.
    Zhao B.S., He C. 2015. Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biol. 16, 1–3.CrossRefGoogle Scholar
  4. 4.
    Shen L., Liang Z., Gu X., Chen Y., Teo Z.W., Hou X., Cai W.M., Dedon P.C., Liu L., Yu H. 2016. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Dev. Cell. 38, 186–200.CrossRefGoogle Scholar
  5. 5.
    Fustin J.M., Doi M., Yamaguchi Y., Hida H., Nishimura S., Yoshida M., Isagawa T., Morioka M.S., Kakeya H., Manabe I. 2013. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 155, 793–806.CrossRefGoogle Scholar
  6. 6.
    Tao X., Chen J., Jiang Y. 2017. Transcriptome-wide N6-methyladenosine methylome profiling of porcine muscle and adipose tissues reveals a potential mechanism for transcriptional regulation and differential methylation pattern. BMC Genomics. 18, 336.CrossRefGoogle Scholar
  7. 7.
    Bokar J.A., Rathshambaugh M.E., Ludwiczak R., Narayan P., Rottman F. 1994. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol. Chem. 269, 17697–17704.Google Scholar
  8. 8.
    Bokar J.A., Shambaugh M.E., Polayes D., Matera A.G., Rottman FM. 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3, 1233–1247.Google Scholar
  9. 9.
    Liu J., Yue Y., Han D., Wang X., Fu Y., Zhang L. 2014. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95.CrossRefGoogle Scholar
  10. 10.
    Kuang S., Kuroda K., Grand F.L. 2007. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 129, 999.CrossRefGoogle Scholar
  11. 11.
    Tapscott S.J. 2005. The circuitry of a master switch: MyoD and the regulation of skeletal muscle gene transcription. Development. 132, 2685.CrossRefGoogle Scholar
  12. 12.
    Haldar M., Karan G., Tvrdik P., Capecchi M.R. 2008. Two cell lineages, Myf5 and Myf5-independent, participate in mouse skeletal myogenesis. Dev. Cell. 14, 437–445.CrossRefGoogle Scholar
  13. 13.
    Singh K., Dilworth F.J. 2013. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J. 280, 3991–4003.CrossRefGoogle Scholar
  14. 14.
    Sabourin L.A., Rudnicki M.A. 2000. The molecular regulation of myogenesis. Clin. Genet. 57, 16.CrossRefGoogle Scholar
  15. 15.
    Tidyman W.E., Moore L.A., Bandman E. 1997. Expression of fast myosin heavy chain transcripts in developing and dystrophic chicken skeletal muscle. Dev. Dynam. 208, 491.CrossRefGoogle Scholar
  16. 16.
    Sant’ana Pereira J.A., Wessels A., Nijtmans L. 1995. New method for the accurate characterization of single human skeletal muscle fibres demonstrates a relation between mATPase and MyHC expression in pure and hybrid fibre types. J. Muscle Res. Cell Motility. 16, 21.CrossRefGoogle Scholar
  17. 17.
    Brooke M.H., Kaiser K.K. 1970. Muscle fiber types: How many and what kind? Arch. Neurol. 23, 369–379.CrossRefGoogle Scholar
  18. 18.
    Edström L., Kugelberg E. 1968. Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J. Neurol. Neurosurg. Psychiatry. 31, 424–433.CrossRefGoogle Scholar
  19. 19.
    Burke R.E., Levine D.N., Tsairis P. 1973. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol. 234, 723–748.CrossRefGoogle Scholar
  20. 20.
    Xu H., Tao X., Wei Y., Chen J., Xing S. 2015. Cloning of porcine GPIHBP1 gene, its tissue expression pattern and genetic effect on adipose traits. Gene. 557, 146–153.CrossRefGoogle Scholar
  21. 21.
    Kenneth J., Livak T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 25, 402–408.CrossRefGoogle Scholar
  22. 22.
    Sabourin L.A., Rudnicki M.A. 2010. The molecular regulation of myogenesis. Clin. Genet. 57, 16–25.CrossRefGoogle Scholar
  23. 23.
    Lombardini J.B., Talalay P. 1973. Effect of inhibitors of adenosine triphosphate: L-methionine S-adenosyltransferase on levels of S-adenosyl-L-methionine and L-methionine in normal and malignant mammalian tissues. Mol. Pharmacol. 9, 542–560.Google Scholar
  24. 24.
    Niu Y., Zhao X., Wu Y.S., Li M.M., Wang X.J., Yang Y.G. 2012. N6-methyl-adenosine (m6 A) in RNA: An old modification with a novel epigenetic function. Genomics, Proteomics Bioinformatics. 11, 8–17.CrossRefGoogle Scholar
  25. 25.
    Chen T., Hao Y.J., Zhang Y., Li M.M., Wang M., Han W. 2015. m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 16, 289–301.CrossRefGoogle Scholar
  26. 26.
    Batista P.J., Molinie B., Wang J., Qu K., Zhang J., Li L. 2014. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 15, 707–719.CrossRefGoogle Scholar
  27. 27.
    Wang Y., Li Y., Toth J.I., Petroski M.D. 2014. N6‑methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198.CrossRefGoogle Scholar
  28. 28.
    Batista P.J., Molinie B., Wang J., Qu K., Zhang J., Li L. 2014. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 15, 707–719.CrossRefGoogle Scholar
  29. 29.
    Bokar J.A. 2005. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In: Fine-Tuning of RNA Functions by Modification and Editing. Topics in Current Genetics, vol. 12. Berlin-Heidelberg: Springer Verlag, pp. 141–177.Google Scholar
  30. 30.
    Bokar J.A., Shambaugh M.E., Polayes D., Matera A.G., Rottman F.M. 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3, 1233.Google Scholar
  31. 31.
    Lin D.W., Chung B.P., Kaiser P. 2014. S-adenosylmethionine limitation induces p38 mitogen-activated protein kinase and triggers cell cycle arrest in G1. J. Cell Sci. 127, 50–59.CrossRefGoogle Scholar
  32. 32.
    Zhang F., Warskulat U., Wettstein M., Häussinger D. 1996. Identification of betaine as an osmolyte in rat liver macrophages (Kupffer cells). Gastroenterology. 110, 1543–1552.CrossRefGoogle Scholar
  33. 33.
    Natalello A., Liu J., Ami D., Doglia S.M., De M.A. 2009. The osmolyte betaine promotes protein misfolding and disruption of protein aggregates. Proteins Struct. Funct. Bioinform. 75, 509–517.CrossRefGoogle Scholar
  34. 34.
    Allison S.P. 1987. Annual review of nutrition. Postgraduate Med. J. 63, 513.CrossRefGoogle Scholar
  35. 35.
    Wang X., Zhu L., Chen J., Wang Y. 2015. mRNA m6A-methylation downregulates adipogenesis in porcine adipocytes. Biochem. Biophys. Res. Commun. 459, 201–207.CrossRefGoogle Scholar
  36. 36.
    Senesi P., Luzi L., Montesano A., Mazzocchi N., Terruzzi I. 2013. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation. J. Translat. Med. 11, 1–12.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • J. N. Chen
    • 1
  • Y. Chen
    • 1
  • Y. Y. Wei
    • 1
  • M. A. Raza
    • 2
  • Q. Zou
    • 1
  • X. Y. Xi
    • 1
  • L. Zhu
    • 3
  • G. Q. Tang
    • 3
  • Y. Z. Jiang
    • 1
    Email author
  • X. W. Li
    • 3
    Email author
  1. 1.Department of Zoology, College of Life Science, Sichuan Agricultural UniversityYa’an, SichuanChina
  2. 2.Department of Crop Cultivation and Farming System, College of Agronomy, Sichuan Agricultural UniversityChengdu, SichuanChina
  3. 3.Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural UniversityChengdu, SichuanChina

Personalised recommendations