Molecular Biology

, Volume 53, Issue 3, pp 419–426 | Cite as

Differentially Expressed Long Noncoding RNAs in the Promoter Region of the fork head Gene in Drosophila melanogaster Detected by Northern Blot Hybridization

  • A. I. Burlin
  • S. V. TillibEmail author


It is known that long (200–300 nucleotides and longer) non-protein-coding RNAs (ncRNAs) tissue-specifically expressed from the regulatory regions of developmental genes can regulate the transcription of the mRNA of these genes. In this study, an attempt is made to identify differentially expressed ncRNAs in the extended promoter region of the fork head (fkh) gene of the fruit fly Drosophila melanogaster. We investigated four preparations of the total RNA: from embryos, from adult flies (separately from females and males), and from the S2 cell line of cultured Drosophila cells. In the total RNA preparations from embryos and adult flies, the levels of fkh expression differed substantially, whereas in S2 cells its expression is not detected at all (shown in this work). We perform classical Northern blot analysis of gel-separated RNAs hybridized to a series of radioactively labeled DNA fragments corresponding to the adjacent and partially overlapping regions of the promoter region of the fkh gene. Several previously unknown differentially expressed ncRNAs are detected, including those in the regions overlapping with the previously detected regulatory elements (TRE1 and salivary gland enhancer sgE) and the transcription start site of the fkh gene. The collected data complement and clarify the results of the previously conducted RNA-seq experiments, in particular, in terms of the length of the detected RNAs. These results may serve as a foundation for further studies of the mechanisms of tissue-specific regulation of the fkh gene expression.


regulatory noncoding RNA Northern blot Drosophila epigenetic regulation tissue-specific gene expression 



  1. 1.
    Geisler S.J., Paro R. 2015. Trithorax and Polycomb group-dependent regulation: A tale of opposing activities. Development. 142, 2876–2887.CrossRefGoogle Scholar
  2. 2.
    Grossniklaus U., Paro R. 2014. Transcriptional silencing by Polycomb-group proteins. Cold Spring Harb. Perspect. Biol. 6, a019331.CrossRefGoogle Scholar
  3. 3.
    Berry S., Hartley M., Olsson T.S., Dean C., Howard M. 2015. Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance. eLife. 4, e07205.CrossRefGoogle Scholar
  4. 4.
    Steffen P.A., Ringrose L. 2014. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat. Rev. Mol. Cell Biol. 15, 340–356.CrossRefGoogle Scholar
  5. 5.
    Tillib S., Petruk S., Sedkov Y., Kuzin A., Fujioka M., Goto T., Mazo A. 1999. Trithorax and Polycomb group response elements within a Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences. Mol. Cell. Biol. 19, 5289‒5202.CrossRefGoogle Scholar
  6. 6.
    Ringrose L. 2007. Polycomb comes of age: Genome-wide profiling of target sites. Curr. Opin. Cell Biol. 19, 290–297.CrossRefGoogle Scholar
  7. 7.
    Di Croce L., Helin K. 2013. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20, 1147–1155.CrossRefGoogle Scholar
  8. 8.
    Comet I., Riising E.M., Leblanc B., Helin K. 2016. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat. Rev. Cancer. 16, 803–810.CrossRefGoogle Scholar
  9. 9.
    Bauer M., Trupke J., Ringrose L. 2016. The quest for mammalian Polycomb response elements: Are we there yet? Chromosoma. 125, 471–496.CrossRefGoogle Scholar
  10. 10.
    Kassis J.A., Brown J.L. 2013. Polycomb group response elements in Drosophila and vertebrates. Adv. Genet. 81, 83–118.CrossRefGoogle Scholar
  11. 11.
    Ringrose L., Paro R. 2004. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443.CrossRefGoogle Scholar
  12. 12.
    Cech T.R., Steitz J.A. 2014. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157, 77–94.CrossRefGoogle Scholar
  13. 13.
    Davidovich C., Cech T.R. 2015. The recruitment of chromatin modifiers by long noncoding RNAs: Lessons from PRC2. RNA. 21, 2007–2022.CrossRefGoogle Scholar
  14. 14.
    Hekimoglu B., Ringrose L. 2009. Non-coding RNAs in polycomb/trithorax regulation. RNA Biol. 6, 129–137.CrossRefGoogle Scholar
  15. 15.
    Lempradl A., Ringrose L. 2008. How does noncoding transcription regulate Hox genes? BioEssays. 30, 110–121.CrossRefGoogle Scholar
  16. 16.
    DiStefano J.K. 2018. The emerging role of long noncoding RNAs in human disease. Methods Mol. Biol. 1706, 91–110.CrossRefGoogle Scholar
  17. 17.
    Wang K.C., Yang Y.W., Liu B., Sanyal A., Corces-Zimmerman R., Chen Y., Lajoie B.R., Protacio A., Flynn R.A., Gupta R.A., Wysocka J., Lei M., Dekker J., Helms J.A., Chang H.Y. 2011. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 472, 120–124.CrossRefGoogle Scholar
  18. 18.
    Ringrose L. 2017. Noncoding RNAs in Polycomb and Trithorax regulation: A quantitative perspective. Annu. Rev. Genet. 51, 385–411.CrossRefGoogle Scholar
  19. 19.
    Kuzin B., Tillib S., Sedkov I., Mizrokhi L., Mazo A. 1994. The Drosophila trithorax gene encodes a chromosomal protein and directly regulates the region-specific homeotic gene fork head. Genes Dev. 8, 2478‒2490.CrossRefGoogle Scholar
  20. 20.
    Riakhovskiĭ A.A., Tillib S.V. 2007. Immunoprecipitation mapping of the TRX-associated chromosome elements in the fork head gene promoter in the Drosophila melanogaster salivary gland cells. Russ. J. Genet. 43, 1181–1189.CrossRefGoogle Scholar
  21. 21.
    Riakhovskiĭ A.A., Tillib S.V. 2007. Colocalization of S/MAR and TRE in regulatory chromosome regions with tissue-specifically expressed genes in Drosophila melanogaster. Dokl. Akad. Nauk. 416, 416‒419.Google Scholar
  22. 22.
    Weigel D., Jiirgens G., Kuttner F., Seifert E., Jackie H. 1989. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell. 57, 645‒658.CrossRefGoogle Scholar
  23. 23.
    Weigel D., Seifert E., Renter D., Jackie H. 1990. Regulatory elements controlling expression of the Drosophila homeotic gene fork head. EMBO J. 9, 1199‒1207.CrossRefGoogle Scholar
  24. 24.
    Molecular Cloning A Laboratory Manual, 3rd ed. 2001. Eds. Sambrook J., Russell D.W. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press.Google Scholar
  25. 25.
    Zhou B., Bagri A., Beckendorf S.K. 2001. Salivary gland determination in Drosophila: A salivary-specific, fork head enhancer integrates spatial pattern and allows fork head autoregulation. Dev. Biol. 237, 54–67.CrossRefGoogle Scholar
  26. 26.
    Wang X., Goodrich K.J., Gooding A.R., Naeem H., Archer S., Paucek R.D., Youmans D.T., Cech T.R., Davidovich C. 2017. Targeting of Polycomb repressive complex 2 to RNA by short repeats of consecutive guanines. Mol. Cell. 65, 1056–1067.CrossRefGoogle Scholar
  27. 27.
    Okulski H., Druck B., Bhalerao S., Ringrose L. 2011. Quantitative analysis of Polycomb response elements (PREs) at identical genomic locations distinguishes contributions of PRE sequence and genomic environment. Epigenet. Chromatin. 4, 4.CrossRefGoogle Scholar
  28. 28.
    Ray P., De S., Mitra A., Bezstarosti K., Demmers J.A., Pfeifer K., Kassis J.A. 2016. Combgap contributes to recruitment of Polycomb group proteins in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 113, 3826–3831.CrossRefGoogle Scholar
  29. 29.
    Herzog V.A., Lempradl A., Trupke J., Okulski H., Altmutter C., Ruge F., Boidol B., Kubicek S., Schmauss G., Aumayr K., Ruf M., Pospisilik A., Dimond A., Senergin H.B., Vargas M.L., et al. 2014. A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element. Nat. Genet. 46, 973–981.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Gene Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations