Molecular Biology

, Volume 53, Issue 3, pp 313–322 | Cite as

Role of Cellular DNA Repair Systems in HIV-1 Replication

  • A. N. AnisenkoEmail author
  • M. B. Gottikh


A serious problem in the treatment of HIV infection is the emergence of drug-resistant forms of the virus. One promising approach to solving this problem is the development of inhibitors of the interaction between viral proteins with cellular co-factors. However, the development of this approach is hampered due to the lack of knowledge about the involvement of cellular proteins in the pathogenesis of HIV infection. In particular, it is known that the integration of viral DNA into the host genome generates numerous lesions in the cellular DNA, the repair of which is absolutely necessary for successful replication of the virus. However, it is still unknown which cellular proteins are involved in repairing this damage. In this review, we summarize what is known to date about the role of cellular repair systems in the replication of HIV-1 in general, and in the repair of damage that occurs during the integration of viral DNA into a cell’s genome, in particular.


HIV-1 retroviral integration retroviral transcription DNA-PK Ku70 Ku80 



  1. 1.
    Laskey S.B., Siliciano R.F. 2014. A mechanistic theory to explain the efficacy of antiretroviral therapy. Nat. Rev. Microbiol. 12, 772–780.CrossRefGoogle Scholar
  2. 2.
    Domingo P., Vidal F. 2011. Combination antiretroviral therapy. Expert. Opin. Pharmacother. 12, 995–998.CrossRefGoogle Scholar
  3. 3.
    Cihlar T., Fordyce M. 2016. Current status and prospects of HIV treatment. Curr. Opin. Virol. 18, 50–56.CrossRefGoogle Scholar
  4. 4.
    Solomon D.A., Sax P.E. 2015. Current state and limitations of daily oral therapy for treatment. Curr. Opin. HIV AIDS. 10, 219–225.CrossRefGoogle Scholar
  5. 5.
    Iyidogan P., Anderson K.S. 2014. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses. 6, 4095–4139.CrossRefGoogle Scholar
  6. 6.
    Adamson C.S., Freed E.O. 2010. Novel approaches to inhibiting HIV-1 replication. Antiviral Res. 85, 119–141.CrossRefGoogle Scholar
  7. 7.
    Tintori C., Brai A., Fallacara A.L., Fazi R., Schenone S., Botta M. 2014. Protein–protein interactions and human cellular cofactors as new targets for HIV therapy. Curr. Opin. Pharmacol. 18, 1–8.CrossRefGoogle Scholar
  8. 8.
    Skalka A.M., Katz R.A. 2005. Retroviral DNA integration and the DNA damage response. Cell Death Differ. 12, 971–978.CrossRefGoogle Scholar
  9. 9.
    Sükösd Z., Andersen E.S., Seemann S.E., Jensen M.K., Hansen M., Gorodkin J., Kjems J. 2015. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain. Nucleic Acids Res. 43, 10168–10179.Google Scholar
  10. 10.
    Muriaux D., Darlix J.L. 2010. Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol. 7, 744–753.CrossRefGoogle Scholar
  11. 11.
    Engelman A. 2009. Isolation and analysis of HIV-1 preintegration complexes. Methods Mol. Biol. 485, 135–149.CrossRefGoogle Scholar
  12. 12.
    Agapkina Yu.Yu., Prikazchikova T.A., Smolov M.A., Gottikh M.B. 2005. Structure and functions of HIV-1 integrase. Usp. Biol. Khim. 45, 87–122.Google Scholar
  13. 13.
    Knyazhanskaya e.s., Shadrina O.A., Anisenko A.N., Gottikh M.B. 2016. Role of DNA-dependent protein kinase in the HIV-1 replication cycle. Mol. Biol. (Moscow). 50 (4), 567–579.CrossRefGoogle Scholar
  14. 14.
    Jackson S.P., Bartek J. 2009. The DNA-damage response in human biology and disease. Nature. 461, 1071–1078.CrossRefGoogle Scholar
  15. 15.
    Ryan E.L., Hollingworth R., Grand R.J. 2016. Activation of the DNA damage response by RNA viruses. Biomolecules. 6, 2.CrossRefGoogle Scholar
  16. 16.
    Norbury C.J., Zhivotovsky B. 2004. DNA damage-induced apoptosis. Oncogene. 23, 2797–2808.CrossRefGoogle Scholar
  17. 17.
    Yang J., Yu Y., Hamrick H.E., Duerksen-Hughes P.J. 2003. ATM, ATR and DNA-PK: Initiators of the cellular genotoxic stress responses. Carcinogenesis. 24, 1571–1580.CrossRefGoogle Scholar
  18. 18.
    Ciccia A., Elledge S.J. 2010. The DNA damage response: Making it safe to play with knives. Mol. Cell. 40, 179–204.CrossRefGoogle Scholar
  19. 19.
    Gagné J.P., Rouleau M., Poirier G.G. 2012. Structural biology. PARP-1 activation – bringing the pieces together. Science. 336, 678–679.CrossRefGoogle Scholar
  20. 20.
    Khodyreva S.N., Lavrik O.I. 2016. Poly(ADP-ribose) polymerase 1 as a key regulator of DNA repair. Mol. Biol. (Moscow). 50 (4), 580–595.CrossRefGoogle Scholar
  21. 21.
    Ko H.L., Ren E.C. 2012. Functional aspects of PARP1 in DNA repair and transcription. Biomolecules. 2, 524–548CrossRefGoogle Scholar
  22. 22.
    Ceccaldi R., Rondinelli B., D’Andrea A.D. 2016. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64.CrossRefGoogle Scholar
  23. 23.
    Chang H.H., Pannunzio N.R., Adachi N., Lieber M.R. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18, 495–506.CrossRefGoogle Scholar
  24. 24.
    Cannan W.J., Pederson D.S. 2016. Mechanisms and consequences of double-strand DNA break formation in chromatin. J. Cell Physiol. 231, 3–14.CrossRefGoogle Scholar
  25. 25.
    Shinagawa H., Iwasaki H. 1996. Processing the Holliday junction in homologous recombination. Trends Biochem. Sci. 21, 107–111.CrossRefGoogle Scholar
  26. 26.
    Abbotts R., Wilson D.M. 2017. Coordination of DNA single strand break repair. Free Radic. Biol. Med. 107, 228–244.CrossRefGoogle Scholar
  27. 27.
    Krokan H.E., Bjørås M. 2013. Base excision repair. Cold Spring Harb. Perspect. Biol. 5, a012583CrossRefGoogle Scholar
  28. 28.
    Lans H., Marteijn J.A., Vermeulen W. 2012. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin. 5, 4.CrossRefGoogle Scholar
  29. 29.
    Kunkel T.A., Erie D.A. 2015. Eukaryotic mismatch repair in relation to DNA replication. Annu. Rev. Genet. 49, 291–313.CrossRefGoogle Scholar
  30. 30.
    Brin E., Yi J., Skalka A.M., Leis J. 2000. Modeling the late steps in HIV-1 retroviral integrase-catalyzed DNA integration. J. Biol. Chem. 275, 39287–39295.CrossRefGoogle Scholar
  31. 31.
    Miller M.D., Wang B., Bushman F.D. 1995. Human immunodeficiency virus type 1 preintegration complexes containing discontinuous plus strands are competent to integrate in vitro. J. Virol. 69, 3938–3944.Google Scholar
  32. 32.
    Daniel R., Katz R.A., Skalka A.M. 1999. A role for DNA-PK in retroviral DNA integration. Science. 284, 644–647.CrossRefGoogle Scholar
  33. 33.
    Sakurai Y., Komatsu K., Agematsu K., Matsuoka M. 2009. DNA double strand break repair enzymes function at multiple steps in retroviral infection. Retrovirology. 6, 114.CrossRefGoogle Scholar
  34. 34.
    Daniel R., Greger J.G., Katz R.A., Taganov K.D., Wu X., Kappes J.C., Skalka A.M. 2004. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J. Virol. 78, 8573–8581.CrossRefGoogle Scholar
  35. 35.
    Coffin J.M., Rosenberg N. 1999. Retroviruses. Closing the joint. Nature. 399, 413–416.CrossRefGoogle Scholar
  36. 36.
    Baekelandt V., Claeys A., Cherepanov P., De Clercq E., De Strooper B., Nuttin B., Debyser Z. 2000. DNA-dependent protein kinase is not required for efficient lentivirus integration. J. Virol. 74, 11278–11285.CrossRefGoogle Scholar
  37. 37.
    Daniel R., Katz R.A., Merkel G., Hittle J.C., Yen T.J., Skalka A.M. 2001. Wortmannin potentiates integrase-mediated killing of lymphocytes and reduces the efficiency of stable transduction by retroviruses. Mol. Cell Biol. 21, 1164–1172.CrossRefGoogle Scholar
  38. 38.
    Li L., Olvera J.M., Yoder K.E., Mitchell R.S., Butler S.L., Lieber M., Martin S.L., Bushman F.D. 2001. Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J. 20, 3272–3281.CrossRefGoogle Scholar
  39. 39.
    Studamire B., Goff S.P. 2008. Host proteins interacting with the Moloney murine leukemia virus integrase: multiple transcriptional regulators and chromatin binding factors. Retrovirology. 5, 48.CrossRefGoogle Scholar
  40. 40.
    Zheng Y., Ao Z., Wang B., Jayappa K.D., Yao X. 2011. Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J. Biol. Chem. 286, 17722–17735.CrossRefGoogle Scholar
  41. 41.
    Anisenko A.N., Knyazhanskaya E.S., Zalevsky A.O., Agapkina J.Y., Sizov A.I., Zatsepin T.S., Gottikh M.B. 2017. Characterization of HIV-1 integrase interaction with human Ku70 protein and initial implications for drug targeting. Sci. Rep. 7, 5649.CrossRefGoogle Scholar
  42. 42.
    Jeanson L., Subra F., Vaganay S., Hervy M., Marangoni E., Bourhis J., Mouscadet J.F. 2002. Effect of Ku80 depletion on the preintegrative steps of HIV-1 replication in human cells. Virology. 300, 100–108.CrossRefGoogle Scholar
  43. 43.
    Waninger S., Kuhen K., Hu X., Chatterton J.E., Wong-Staal F., Tang H. 2004. Identification of cellular cofactors for human immunodeficiency virus replication via a ribozyme-based genomics approach. J. Virol. 78, 12829–12837.CrossRefGoogle Scholar
  44. 44.
    Manic G., Maurin-Marlin A., Laurent F., Vitale I., Thierry S., Delelis O., Dessen P., Vincendeau M., Leib-Mösch C., Hazan U., Mouscadet J.F., Bury-Moné S. 2013. Impact of the Ku complex on HIV-1 expression and latency. PLoS One. 8, e69691.CrossRefGoogle Scholar
  45. 45.
    Espeseth A.S., Fishel R., Hazuda D., Huang Q., Xu M., Yoder K., Zhou H. 2011. siRNA screening of a targeted library of DNA repair factors in HIV infection reveals a role for base excision repair in HIV integration. PLoS One. 6, e17612.CrossRefGoogle Scholar
  46. 46.
    Hultquist J.F., Schumann K., Woo J.M., Manganaro L., McGregor M.J., Doudna J., Simon V., Krogan N.J., Marson A. 2016. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV–host interactions in primary human T cells. Cell Rep. 17, 1438–1452.CrossRefGoogle Scholar
  47. 47.
    Appelqvist H., Johansson A.C., Linderoth E., Johansson U., Antonsson B., Steinfeld R., Kågedal K., Ollinger K. 2012. Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of bid at Phe24, Trp48, and Phe183. Ann. Clin. Lab. Sci. 42, 231–242.Google Scholar
  48. 48.
    Cooper A., García M., Petrovas C., Yamamoto T., Koup R.A., Nabel G.J. 2013. HIV integration and T cell death: Additional commentary. Retrovirology. 10, 150.CrossRefGoogle Scholar
  49. 49.
    Skalka A.M. 2013. HIV: Integration triggers death. Nature. 498, 305–306.CrossRefGoogle Scholar
  50. 50.
    Estaquier J., Zaunders J., Laforge M. 2013. HIV integrase and the swan song of the CD4 T cells? Retrovirology. 10, 149.CrossRefGoogle Scholar
  51. 51.
    Dehart J.L., Andersen J.L., Zimmerman E.S., Ardon O., An D.S., Blackett J., Kim B., Planelles V. 2005. The ataxia telangiectasia-mutated and Rad3-related protein is dispensable for retroviral integration. J. Virol. 79, 1389–1396.CrossRefGoogle Scholar
  52. 52.
    Lau A., Swinbank K.M., Ahmed P.S., Taylor D.L., Jackson S.P., Smith G.C., O’Connor M.J. 2005. Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase. Nat. Cell Biol. 7, 493–500.CrossRefGoogle Scholar
  53. 53.
    Smith J.A., Wang F.X., Zhang H., Wu K.J., Williams K.J., Daniel R. 2008. Evidence that the Nijmegen breakage syndrome protein, an early sensor of double-strand DNA breaks (DSB), is involved in HIV-1 post-integration repair by recruiting the ataxia telangiectasia-mutated kinase in a process similar to, but distinct from, cellular DSB repair. Virol. J. 5, 11.CrossRefGoogle Scholar
  54. 54.
    Awasthi P., Foiani M., Kumar A. 2016. ATM and ATR signaling at a glance. J. Cell Sci. 129, 1285.CrossRefGoogle Scholar
  55. 55.
    Yan S., Sorrell M., Berman Z. 2014. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol. Life Sci. 71, 3951–3967.CrossRefGoogle Scholar
  56. 56.
    Durocher D., Jackson S.P. 2001. DNA-PK, ATM and ATR as sensors of DNA damage: Variations on a theme? Curr. Opin. Cell Biol. 13, 225–231.CrossRefGoogle Scholar
  57. 57.
    Daniel R., Kao G., Taganov K., Greger J.G., Favorova O., Merkel G., Yen T.J., Katz R.A., Skalka A.M. 2003. Evidence that the retroviral DNA integration process triggers an ATR-dependent DNA damage response. Proc. Natl. Acad. Sci. U. S. A. 100, 4778–4783.CrossRefGoogle Scholar
  58. 58.
    Ariumi Y., Turelli P., Masutani M., Trono D. 2005. DNA damage sensors ATM, ATR, DNA-PKcs, and PARP-1 are dispensable for human immunodeficiency virus type 1 integration. J. Virol. 79, 2973–2978.CrossRefGoogle Scholar
  59. 59.
    Kameoka M., Nukuzuma S., Itaya A., Tanaka Y., Ota K., Ikuta K., Yoshihara K. 2004. RNA interference directed against poly(ADP-ribose) polymerase 1 efficiently suppresses human immunodeficiency virus type 1 replication in human cells. J. Virol. 78, 8931–8934.CrossRefGoogle Scholar
  60. 60.
    Kameoka M., Nukuzuma S., Itaya A., Tanaka Y., Ota K., Inada Y., Ikuta K., Yoshihara K. 2005. Poly(ADP-ribose) polymerase-1 is required for integration of the human immunodeficiency virus type 1 genome near centromeric alphoid DNA in human and murine cells. Biochem. Biophys. Res. Commun. 334, 412–417.CrossRefGoogle Scholar
  61. 61.
    Gäken J.A., Tavassoli M., Gan S.U., Vallian S., Giddings I., Darling D.C., Galea-Lauri J., Thomas M.G., Abedi H., Schreiber V., Ménissier-de Murcia J., Collins M.K., Shall S., Farzaneh F. 1996. Efficient retroviral infection of mammalian cells is blocked by inhibition of poly(ADP-ribose) polymerase activity. J. Virol. 70, 3992–4000.Google Scholar
  62. 62.
    Ha H.C., Juluri K., Zhou Y., Leung S., Hermankova M., Snyder S.H. 2001. Poly(ADP-ribose) polymerase-1 is required for efficient HIV-1 integration. Proc. Natl. Acad. Sci. U. S. A. 98, 3364–3368.CrossRefGoogle Scholar
  63. 63.
    Siva A.C., Bushman F. 2002. Poly(ADP-ribose) polymerase 1 is not strictly required for infection of murine cells by retroviruses. J. Virol. 76, 11904–11910.CrossRefGoogle Scholar
  64. 64.
    Rom S., Reichenbach N.L., Dykstra H., Persidsky Y. 2015. The dual action of poly(ADP-ribose) polymerase-1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity. Front. Microbiol. 6, 878.CrossRefGoogle Scholar
  65. 65.
    Bueno M.T., Reyes D., Valdes L., Saheba A., Urias E., Mendoza C., Fregoso O.I., Llano M. 2013. Poly(ADP-ribose) polymerase 1 promotes transcriptional repression of integrated retroviruses. J. Virol. 87, 2496–2507.CrossRefGoogle Scholar
  66. 66.
    Yoder K.E., Bushman F.D. 2000. Repair of gaps in retroviral DNA integration intermediates. J. Virol. 74, 11191–11200.CrossRefGoogle Scholar
  67. 67.
    Yoder K.E., Espeseth A., Wang X.H., Fang Q., Russo M.T., Lloyd R.S., Hazuda D., Sobol R.W., Fishel R. 2011. The base excision repair pathway is required for efficient lentivirus integration. PLoS One. 6, e17862.CrossRefGoogle Scholar
  68. 68.
    Goetze R.W., Kim D.H., Schinazi R.F., Kim B. 2017. A CRISPR/Cas9 approach reveals that the polymerase activity of DNA polymerase β is dispensable for HIV-1 infection in dividing and nondividing cells. J. Biol. Chem. 292, 14016–14025.CrossRefGoogle Scholar
  69. 69.
    Bennett G.R., Peters R., Wang X.H., Hanne J., Sobol R.W., Bundschuh R., Fishel R., Yoder K.E. 2014. Repair of oxidative DNA base damage in the host genome influences the HIV integration site sequence preference. PLoS One. 9, e103164.CrossRefGoogle Scholar
  70. 70.
    Anisenko A.N., Knyazhanskaya E.S., Isaguliants M.G., Gottikh M.B. 2018. A qPCR assay for measuring the post-integrational DNA repair in HIV-1 replication. J. Virol. Methods. 262, 12–19.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Chemical Department, Moscow State UniversityMoscowRussia
  2. 2.Belozersky Institute of Physical and Chemical Biology, Moscow State UniversityMoscowRussia

Personalised recommendations