Advertisement

Molecular Biology

, Volume 53, Issue 2, pp 212–226 | Cite as

HIV Restriction Factors and Their Ambiguous Role during Infection

  • A. A. ZotovaEmail author
  • A. A. Atemasova
  • A. V. Filatov
  • D. V. Mazurov
REVIEWS
  • 4 Downloads

Currently, more than 37 million individuals worldwide are infected with the human immunodeficiency virus (HIV). Antiretroviral therapy may control the viral infection but is incapable of eradicating it. It is important to understand how cells respond to HIV-1 infection and what cellular factors are involved in this process to develop novel classes of antiviral drugs. This review summarizes the current understanding of the HIV restriction mechanism. We discuss the ambiguous role of HIV restriction factors in viral infection and counteraction mediated by HIV-1 accessory proteins.

Keywords:

HIV restriction factors ISGs HIV accessory proteins 

Notes

REFERENCES

  1. 1.
    Sharp P.M., Hahn B.H. 2011. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1 (1), a006841.  https://doi.org/10.1101/cshperspect.a006841 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mourez T., Simon F., Plantier J.-C. 2013. Non-M variants of human immunodeficiency virus type 1. Clin. Microbiol. Rev. 26 (3), 448–461.  https://doi.org/10.1128/CMR.00012-13 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Vallari A., Holzmayer V., Harris B., Yamaguchi J., Ngansop C., Makamche F., Mbanya D., Kaptué L., Ndembi N., Gürtler L., Devare S., Brennan C.A. 2011. Confirmation of putative HIV-1 group P in Cameroon. J. Virol. 85 (3), 1403–1407.  https://doi.org/10.1128/JVI.02005-10 CrossRefPubMedGoogle Scholar
  4. 4.
    Vallari A., Bodelle P., Ngansop C., Makamche F., Ndembi N., Mbanya D., Kaptué L., Gürtler L.G., McArthur C.P., Devare S.G., Simon F. 2010. Four new HIV-1 group N isolates from Cameroon: Prevalence continues to be low. AIDS Res. Hum. Retrov. 26 (9806), 109–115.  https://doi.org/10.1016/S0140-6736(11)61457-8 CrossRefGoogle Scholar
  5. 5.
    Plantier J.C., Leoz M., Dickerson J.E., De Oliveira F., Cordonnier F., Lemée V., Damond F., Robertson D.L., Simon F. 2009. A new human immunodeficiency virus derived from gorillas. Nat. Med. 15 (8), 871–872.  https://doi.org/10.1038/nm.2016 CrossRefPubMedGoogle Scholar
  6. 6.
    Soliman M., Srikrishna G., Balagopal A. 2017. Mechanisms of HIV-1 control. Curr. HIV/AIDS Rep. 14 (3), 101–109.  https://doi.org/10.1007/s11904-017-0357-9 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Karamov E.V., Petrov R.V. 2011. Sovereign immunity: 2. Cellular factors of antiretroviral defense: Tetherin, APOBEC3 family, cellular microRNA. CRISPR/Cas systems of prokaryotes. Fiziol. Patol. Immun. Sistemy. 15 (4), 3–23.Google Scholar
  8. 8.
    Karamov E.V., Petrov R.V. 2011. Sovereign immunity: 1. Specfic features of antiretroviral immune response. Cellular factors interacting with retroviral capsid proteins: TRIM5, cyclophilin. Fiziol. Patol. Immun. Sistemy. 15 (3), 3–22.Google Scholar
  9. 9.
    Brass A.L., Huang I.-C., Benita Y., John S.P., Krishnan M.N., Feeley E.M., Ryan B.J., Weyer J.L., van der Weyden L., Fikrig E., Adams D.J., Xavier R.J., Farzan M., Elledge S.J. 2009. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell. 139 (7), 1243–1254.  https://doi.org/10.1016/j.cell.2009.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bishop K.N., Verma M., Kim E.-Y., Wolinsky S.M., Malim M.H. 2008. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog. 4 (12), e1000231.  https://doi.org/10.1371/journal.ppat.1000231 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sheehy A.M., Gaddis N.C., Choi J.D., Malim M.H. 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature. 418 (6898), 646–650.  https://doi.org/10.1038/nature00939 CrossRefPubMedGoogle Scholar
  12. 12.
    Harris R.S., Bishop K.N., Sheehy A.M., Craig H.M., Petersen-Mahrt S.K., Watt I.N., Neuberger M.S., Malim M.H. 2003. DNA deamination mediates innate immunity to retroviral infection. Cell. 113 (6), 803–809. http://www.ncbi.nlm.nih.gov/pubmed/12809610.CrossRefPubMedGoogle Scholar
  13. 13.
    Stremlau M., Owens C.M., Perron M.J., Kiessling M., Autissier P., Sodroski J. 2004. The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 427 (6977), 848–853.  https://doi.org/10.1038/nature02343 CrossRefPubMedGoogle Scholar
  14. 14.
    Sayah D.M., Sokolskaja E., Berthoux L., Luban J. 2004. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature. 430 (6999), 569–573.  https://doi.org/10.1038/nature02777 CrossRefPubMedGoogle Scholar
  15. 15.
    Stremlau M., Perron M., Lee M., Li Y., Song B., Javanbakht H., Diaz-Griffero F., Anderson D.J., Sundquist W.I., Sodroski J. 2006. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. Proc. Natl. Acad. Sci. U. S. A. 103 (14), 5514–5519.  https://doi.org/10.1073/pnas.0509996103 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kane M., Yadav S.S., Bitzegeio J., Kutluay S.B., Zang T., Wilson S.J., Schoggins J.W., Rice C.M., Yamashita M., Hatziioannou T., Bieniasz P.D. 2013. MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature. 502 (7472), 563–566.  https://doi.org/10.1038/nature12653 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Goujon C., Moncorgé O., Bauby H., Doyle T., Ward C.C., Schaller T., Hué S., Barclay W.S., Schulz R., Malim M.H. 2013. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature. 502 (7472), 559–562.  https://doi.org/10.1038/nature12542 CrossRefPubMedGoogle Scholar
  18. 18.
    Liu Z., Pan Q., Ding S., Qian J., Xu F., Zhou J., Cen S., Guo F., Liang C. 2013. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe. 14 (4), 398–410.  https://doi.org/10.1016/j.chom.2013.08.015 CrossRefPubMedGoogle Scholar
  19. 19.
    Li M., Kao E., Gao X., Sandig H., Limmer K., Pavon-Eternod M., Jones T.E., Landry S., Pan T., Weitzman M.D., David M. 2012. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 491 (7422), 125–128.  https://doi.org/10.1038/nature11433 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hrecka K., Hao C., Gierszewska M., Swanson S.K., Kesik-Brodacka M., Srivastava S., Florens L., Washburn M.P., Skowronski J. 2011. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature. 474 (7353), 658–661.  https://doi.org/10.1038/nature10195 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Berger A., Sommer A.F.R., Zwarg J., Hamdorf M., Welzel K., Esly N., Panitz S., Reuter A., Ramos I., Jatiani A., Mulder L.C.F., Fernandez-Sesma A., Rutsch F., Simon V., König R., Flory E. 2011. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog. 7 (12), e1002425.  https://doi.org/10.1371/journal.ppat.1002425 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Goldstone D.C., Ennis-Adeniran V., Hedden J.J., Groom H.C.T., Rice G.I., Christodoulou E., Walker P.A., Kelly G., Haire L.F., Yap M.W., de Carvalho L.P.S., Stoye J.P., Crow Y.J., Taylor I.A., Webb M. 2011. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature. 480 (7377), 379–382.  https://doi.org/10.1038/nature10623 CrossRefPubMedGoogle Scholar
  23. 23.
    Neil S.J.D., Zang T., Bieniasz P.D. 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 451 (7177), 425–430.  https://doi.org/10.1038/nature06553 CrossRefPubMedGoogle Scholar
  24. 24.
    Sauter D., Specht A., Kirchhoff F. 2010. Tetherin: Holding on and letting go. Cell. 141 (3), 392–398.  https://doi.org/10.1016/j.cell.2010.04.022 CrossRefPubMedGoogle Scholar
  25. 25.
    Francis M.L., Meltzer M.S. 1993. Induction of IFN-alpha by HIV-1 in monocyte-enriched PBMC requires gp120–CD4 interaction but not virus replication. J. Immunol. 151 (4), 2208–2216. http://www.ncbi.nlm. nih.gov/pubmed/8345204.PubMedGoogle Scholar
  26. 26.
    Jaffe E.A., Armellino D., Lam G., Cordon-Cardo C., Murray H.W., Evans R.L. 1989. IFN-gamma and IFN-alpha induce the expression and synthesis of Leu 13 antigen by cultured human endothelial cells. J. Immunol. 143 (12), 3961–3966. http://www.ncbi.nlm. nih.gov/pubmed/2512344.PubMedGoogle Scholar
  27. 27.
    Lu J., Pan Q., Rong L., He W., Liu S.-L., Liang C. 2011. The IFITM proteins inhibit HIV-1 infection. J. Virol. 85 (5), 2126–2137.  https://doi.org/10.1128/JVI.01531-10 CrossRefPubMedGoogle Scholar
  28. 28.
    Weston S., Czieso S., White I.J., Smith S.E., Wash R.S., Diaz-Soria C., Kellam P., Marsh M. 2016. Alphavirus restriction by IFITM proteins. Traffic. 17 (9), 997–1013.  https://doi.org/10.1111/tra.12416 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Feeley E.M., Sims J.S., John S.P., Chin C.R., Pertel T., Chen L.-M., Gaiha G.D., Ryan B.J., Donis R.O., Elledge S.J., Brass A.L. 2011. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog. 7 (10), e1002337.  https://doi.org/10.1371/journal.ppat.1002337 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li K., Markosyan R.M., Zheng Y.-M., Golfetto O., Bungart B., Li M., Ding S., He Y., Liang C., Lee J.C., Gratton E., Cohen F.S., Liu S.-L. 2013. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog. 9 (1), e1003124.  https://doi.org/10.1371/journal.ppat.1003124 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Desai T.M., Marin M., Chin C.R., Savidis G., Brass A.L., Melikyan G.B. 2014. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog. 10 (4), e1004048.  https://doi.org/10.1371/journal.ppat.1004048 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Amini-Bavil-Olyaee S., Choi Y.J., Lee J.H., Shi M., Huang I.-C., Farzan M., Jung J.U. 2013. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe. 13 (4), 452–464.  https://doi.org/10.1016/j.chom.2013.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Compton A.A., Bruel T., Porrot F., Mallet A., Sachse M., Euvrard M., Liang C., Casartelli N., Schwartz O. 2014. IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe. 16 (6), 736–747.  https://doi.org/10.1016/j.chom.2014.11.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Foster T.L., Wilson H., Iyer S.S., Coss K., Doores K., Smith S., Kellam P., Finzi A., Borrow P., Hahn B.H., Neil S.J.D. 2016. Resistance of transmitted founder HIV-1 to IFITM-mediated restriction. Cell Host Microbe. 20 (4), 429–442.  https://doi.org/10.1016/j.chom.2016.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yu J., Li M., Wilkins J., Ding S., Swartz T.H., Esposito A.M., Zheng Y.-M., Freed E.O., Liang C., Chen B.K., Liu S.-L. 2015. IFITM proteins restrict HIV-1 infection by antagonizing the envelope glycoprotein. Cell Rep. 13 (1), 145–156.  https://doi.org/10.1016/j.celrep.2015.08.055 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rajsbaum R., García-Sastre A., Versteeg G.A. 2014. TRIMmunity: The roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J. Mol. Biol. 426 (6), 1265–1284.  https://doi.org/10.1016/j.jmb.2013.12.005 CrossRefPubMedGoogle Scholar
  37. 37.
    Versteeg G.A., Benke S., García-Sastre A., Rajsbaum R. 2014. InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev. 25 (5), 563–576.  https://doi.org/10.1016/j.cytogfr.2014.08.001 CrossRefPubMedGoogle Scholar
  38. 38.
    Ozato K., Shin D.-M., Chang T.-H., Morse H.C. 2008. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 8 (11), 849–860.  https://doi.org/10.1038/nri2413 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Uchil P.D., Hinz A., Siegel S., Coenen-Stass A., Pertel T., Luban J., Mothes W. 2013. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J. Virol. 87 (1), 257–272.  https://doi.org/10.1128/JVI.01804-12 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Uchil P.D., Quinlan B.D., Chan W.-T., Luna J.M., Mothes W. 2008. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 4 (2), e16.  https://doi.org/10.1371/journal.ppat.0040016 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Versteeg G.A., Rajsbaum R., Sánchez-Aparicio M.T., Maestre A.M., Valdiviezo J., Shi M., Inn K.-S., Fernandez-Sesma A., Jung J., García-Sastre A. 2013. The E3-Ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity. 38 (2), 384–398.  https://doi.org/10.1016/j.immuni.2012.11.013 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Reymond A., Meroni G., Fantozzi A., Merla G., Cairo S., Luzi L., Riganelli D., Zanaria E., Messali S., Cainarca S., Guffanti A., Minucci S., Pelicci P.G., Ballabio A. 2001. The tripartite motif family identifies cell compartments. EMBO J. 20 (9), 2140–2151.  https://doi.org/10.1093/emboj/20.9.2140 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Esposito D., Koliopoulos M.G., Rittinger K. 2017. Structural determinants of TRIM protein function. Biochem. Soc. Trans. 45 (1), 183–191.  https://doi.org/10.1042/BST20160325 CrossRefPubMedGoogle Scholar
  44. 44.
    Napolitano L.M., Meroni G. 2012. TRIM family: Pleiotropy and diversification through homomultimer and heteromultimer formation. IUBMB Life. 64 (1), 64–71.  https://doi.org/10.1002/iub.580 CrossRefPubMedGoogle Scholar
  45. 45.
    Sardiello M., Cairo S., Fontanella B., Ballabio A., Meroni G. 2008. Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol. Biol. 8 (1), 225.  https://doi.org/10.1186/1471-2148-8-225 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Han K., Lou D.I., Sawyer S.L. 2011. Identification of a genomic reservoir for new TRIM genes in primate genomes. PLoS Genet. 7 (12), e1002388.  https://doi.org/10.1371/journal.pgen.1002388 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nisole S., Lynch C., Stoye J.P., Yap M.W. 2004. A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc. Natl. Acad. Sci. U. S. A. 101 (36), 13324–13328.  https://doi.org/10.1073/pnas.0404640101 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lamichhane R., Mukherjee S., Smolin N., Pauszek R.F., Bradley M., Sastri J., Robia S.L., Millar D., Campbell E.M. 2017. Dynamic conformational changes in the rhesus TRIM5α dimer dictate the potency of HIV-1 restriction. Virology. 500, 161–168.  https://doi.org/10.1016/j.virol.2016.10.003 CrossRefPubMedGoogle Scholar
  49. 49.
    Li Y.-L., Chandrasekaran V., Carter S.D., Woodward C.L., Christensen D.E., Dryden K.A., Pornillos O., Yeager M., Ganser-Pornillos B.K., Jensen G.J., Sundquist W.I. 2016. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. Elife. 5.  https://doi.org/10.7554/eLife.16269
  50. 50.
    Sastri J., Campbell E.M. 2011. Recent insights into the mechanism and consequences of TRIM5α retroviral restriction. AIDS Res. Hum. Retrov. 27 (3), 231–238.  https://doi.org/10.1089/AID.2010.0367 CrossRefGoogle Scholar
  51. 51.
    Pertel T., Hausmann S., Morger D., Züger S., Guerra J., Lascano J., Reinhard C., Santoni F.A., Uchil P.D., Chatel L., Bisiaux A., Albert M.L., Strambio-De-Castillia C., Mothes W., Pizzato M., Grütter M.G., Luban J. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature. 472 (7343), 361–365.  https://doi.org/10.1038/nature09976 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wagner J.M., Christensen D.E., Bhattacharya A., Dawidziak D.M., Roganowicz M.D., Wan Y., Pumroy R.A., Demeler B., Ivanov D.N., Ganser-Pornillos B.K., Sundquist W.I., Pornillos O. 2018. General model for retroviral capsid pattern recognition by TRIM5 proteins. J. Virol. 92 (4), e01563-17.  https://doi.org/10.1128/JVI.01563-17 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yudina Z., Roa A., Johnson R., Biris N., de Souza Aranha Vieira D.A., Tsiperson V., Reszka N., Taylor A.B., Hart P.J., Demeler B., Diaz-Griffero F., Ivanov D.N. 2015. RING dimerization links higher-order assembly of TRIM5α to synthesis of K63-linked polyubiquitin. Cell Rep. 12(5), 788–797.  https://doi.org/10.1016/j.celrep.2015.06.072 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    van Tol S., Hage A., Giraldo M., Bharaj P., Rajsbaum R. 2017. The TRIMendous role of TRIMs in virus–host interactions. Vaccines. 5 (3), e23.  https://doi.org/10.3390/vaccines5030023 CrossRefPubMedGoogle Scholar
  55. 55.
    Rold C.J., Aiken C. 2008. Proteasomal degradation of TRIM5α during retrovirus restriction. PLoS Pathog. 4 (5), e1000074.  https://doi.org/10.1371/journal.ppat.1000074 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kutluay S.B., Perez-Caballero D., Bieniasz P.D. 2013. Fates of retroviral core components during unrestricted and TRIM5-restricted infection. PLoS Pathog. 9 (3), e1003214.  https://doi.org/10.1371/journal.ppat.1003214 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yap M.W., Nisole S., Stoye J.P. 2005. A single amino acid change in the SPRY domain of human Trim5alpha leads to HIV-1 restriction. Curr. Biol. 15 (1), 73–78.  https://doi.org/10.1016/j.cub.2004.12.042 CrossRefPubMedGoogle Scholar
  58. 58.
    Barr S.D., Smiley J.R., Bushman F.D. 2008. The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathog. 4 (2), e1000007.  https://doi.org/10.1371/journal.ppat.1000007 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Singh R., Gaiha G., Werner L., McKim K., Mlisana K., Luban J., Walker B.D., Karim S.S.A., Brass A.L., Ndung’u T., CAPRISA Acute Infection Study Team. 2011. Association of TRIM22 with the type 1 interferon response and viral control during primary HIV-1 infection. J. Virol. 85 (1), 208–216.  https://doi.org/10.1128/JVI.01810-10 CrossRefPubMedGoogle Scholar
  60. 60.
    Kajaste-Rudnitski A., Marelli S.S., Pultrone C., Pertel T., Uchil P.D., Mechti N., Mothes W., Poli G., Luban J., Vicenzi E. 2011. TRIM22 inhibits HIV-1 transcription independently of its E3 ubiquitin ligase activity, Tat, and NF-kappaB-responsive long terminal repeat elements. J. Virol. 85 (10), 5183–5196.  https://doi.org/10.1128/JVI.02302-10 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Turrini F., Marelli S., Kajaste-Rudnitski A., Lusic M., Van Lint C., Das A.T., Harwig A., Berkhout B., Vicenzi E. 2015. HIV-1 transcriptional silencing caused by TRIM22 inhibition of Sp1 binding to the viral promoter. Retrovirology. 12 (1), 104.  https://doi.org/10.1186/s12977-015-0230-0 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Deeks S.G., Lewin S.R., Ross A.L., Ananworanich J., Benkirane M., Cannon P., Chomont N., Douek D., Lifson J.D., Lo Y.-R., Kuritzkes D., Margolis D., Mellors J., Persaud D., Tucker J.D., Barre-Sinoussi F., International AIDS Society Towards a Cure Working Group. 2016. International AIDS Society global scientific strategy: Towards an HIV cure 2016. Nat. Med. 22 (8), 839–850.  https://doi.org/10.1038/nm.4108 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yuan T., Yao W., Huang F., Sun B., Yang R. 2014. The human antiviral factor TRIM11 is under the regulation of HIV-1 Vpr. PLoS One. 9 (8), e104269.  https://doi.org/10.1371/journal.pone.0104269 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Laguette N., Sobhian B., Casartelli N., Ringeard M., Chable-Bessia C., Ségéral E., Yatim A., Emiliani S., Schwartz O., Benkirane M. 2011. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature. 474 (7353), 654–657.  https://doi.org/10.1038/nature10117 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Descours B., Cribier A., Chable-Bessia C., Ayinde D., Rice G., Crow Y., Yatim A., Schwartz O., Laguette N., Benkirane M. 2012. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology. 9 (1), 87.  https://doi.org/10.1186/1742-4690-9-87 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ji X., Tang C., Zhao Q., Wang W., Xiong Y. 2014. Structural basis of cellular dNTP regulation by SAMHD1. Proc. Natl. Acad. Sci. U. S. A. 111 (41), E4305–E4314.  https://doi.org/10.1073/pnas.1412289111 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ji X., Wu Y., Yan J., Mehrens J., Yang H., DeLucia M., Hao C., Gronenborn A.M., Skowronski J., Ahn J., Xiong Y. 2013. Mechanism of allosteric activation of SAMHD1 by dGTP. Nat. Struct. Mol. Biol. 20 (11), 1304–1309.  https://doi.org/10.1038/nsmb.2692 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hansen E.C., Seamon K.J., Cravens S.L., Stivers J.T. 2014. GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state. Proc. Natl. Acad. Sci. U. S. A. 111 (18), E1843–E1851.  https://doi.org/10.1073/pnas.1401706111 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Amie S.M., Bambara R.A., Kim B. 2013. GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J. Biol. Chem. 288 (35), 25001–25006.  https://doi.org/10.1074/jbc.C113.493619 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yan J., Kaur S., DeLucia M., Hao C., Mehrens J., Wang C., Golczak M., Palczewski K., Gronenborn A.M., Ahn J., Skowronski J. 2013. Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J. Biol. Chem. 288 (15), 10406–10417.  https://doi.org/10.1074/jbc.M112.443796 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Beloglazova N., Flick R., Tchigvintsev A., Brown G., Popovic A., Nocek B., Yakunin A.F. 2013. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J. Biol. Chem. 288 (12), 8101–8110.  https://doi.org/10.1074/jbc.M112.431148 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ryoo J., Choi J., Oh C., Kim S., Seo M., Kim S.-Y., Seo D., Kim J., White T.E., Brandariz-Nuñez A., Diaz-Griffero F., Yun C.-H., Hollenbaugh J.A., Kim B., Baek D., Ahn K. 2014. The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat. Med. 20 (8), 936–941.  https://doi.org/10.1038/nm.3626 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Seamon K.J., Sun Z., Shlyakhtenko L.S., Lyubchenko Y.L., Stivers J.T. 2015. SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res. 43 (13), 6486–6499.  https://doi.org/10.1093/nar/gkv633 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Antonucci J.M., St. Gelais C., de Silva S., Yount J.S., Tang C., Ji X., Shepard C., Xiong Y., Kim B., Wu L. 2016. SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity. Nat. Med. 22 (10), 1072–1074.  https://doi.org/10.1038/nm.4163 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ryoo J., Hwang S.-Y., Choi J., Oh C., Ahn K. 2016. Reply to SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity. Nat. Med. 22 (10), 1074–1075.  https://doi.org/10.1038/nm.4164 CrossRefPubMedGoogle Scholar
  76. 76.
    Ahn J., Hao C., Yan J., DeLucia M., Mehrens J., Wang C., Gronenborn A.M., Skowronski J. 2012. HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1. J. Biol. Chem. 287 (15), 12550–12558.  https://doi.org/10.1074/jbc.M112.340711 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wei W., Guo H., Han X., Liu X., Zhou X., Zhang W., Yu X.-F. 2012. A novel DCAF1-binding motif required for Vpx-mediated degradation of nuclear SAMHD1 and Vpr-induced G2 arrest. Cell. Microbiol. 14 (11), 1745–1756.  https://doi.org/10.1111/j.1462-5822.2012.01835.x CrossRefPubMedGoogle Scholar
  78. 78.
    Kyei G.B., Cheng X., Ramani R., Ratner L. 2015. Cyclin L2 is a critical HIV dependency factor in macrophages that controls SAMHD1 abundance. Cell Host Microbe. 17 (1), 98–106.  https://doi.org/10.1016/j.chom.2014.11.009 CrossRefPubMedGoogle Scholar
  79. 79.
    Jarmuz A., Chester A., Bayliss J., Gisbourne J., Dunham I., Scott J., Navaratnam N. 2002. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics. 79 (3), 285–296.  https://doi.org/10.1006/geno.2002.6718 CrossRefPubMedGoogle Scholar
  80. 80.
    Harris R.S., Petersen-Mahrt S.K., Neuberger M.S. 2002. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell. 10 (5), 1247–1253. http://www.ncbi.nlm.nih.gov/pubmed/ 12453430.CrossRefPubMedGoogle Scholar
  81. 81.
    Refsland E.W., Stenglein M.D., Shindo K., Albin J.S., Brown W.L., Harris R.S. 2010. Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: Implications for HIV-1 restriction. Nucleic Acids Res. 38 (13), 4274–4284.  https://doi.org/10.1093/nar/gkq174 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Desimmie B.A., Delviks-Frankenberrry K.A., Burdick R.C., Qi D., Izumi T., Pathak V.K. 2014. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J. Mol. Biol. 426 (6), 1220–1245.  https://doi.org/10.1016/j.jmb.2013.10.033 CrossRefPubMedGoogle Scholar
  83. 83.
    Mangeat B., Turelli P., Caron G., Friedli M., Perrin L., Trono D. 2003. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 424 (6944), 99–103.  https://doi.org/10.1038/nature01709 CrossRefPubMedGoogle Scholar
  84. 84.
    Mariani R., Chen D., Schröfelbauer B., Navarro F., König R., Bollman B., Münk C., Nymark-McMahon H., Landau N.R. 2003. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell. 114 (1), 21–31. http://www.ncbi.nlm.nih.gov/pubmed/12859895.CrossRefPubMedGoogle Scholar
  85. 85.
    Suspène R., Rusniok C., Vartanian J.-P., Wain-Hobson S. 2006. Twin gradients in APOBEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res. 34 (17), 4677–4684.  https://doi.org/10.1093/nar/gkl555 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yu Q., König R., Pillai S., Chiles K., Kearney M., Palmer S., Richman D., Coffin J.M., Landau N.R. 2004. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 11 (5), 435–442.  https://doi.org/10.1038/nsmb758 CrossRefPubMedGoogle Scholar
  87. 87.
    Holmes R.K., Malim M.H., Bishop K.N. 2007. APOBEC-mediated viral restriction: Not simply editing? Trends Biochem. Sci. 32 (3), 118–128.  https://doi.org/10.1016/j.tibs.2007.01.004 CrossRefPubMedGoogle Scholar
  88. 88.
    Albin J.S., Brown W.L., Harris R.S. 2014. Catalytic activity of APOBEC3F is required for efficient restriction of Vif-deficient human immunodeficiency virus. Virology. 450451, 49–54.  https://doi.org/10.1016/j.virol.2013.11.041 CrossRefPubMedGoogle Scholar
  89. 89.
    Browne E.P., Allers C., Landau N.R. 2009. Restriction of HIV-1 by APOBEC3G is cytidine deaminase-dependent. Virology. 387 (2), 313–321.  https://doi.org/10.1016/j.virol.2009.02.026 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Yu X., Yu Y., Liu B., Luo K., Kong W., Mao P., Yu X.-F. 2003. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif–Cul5–SCF complex. Science. 302 (5647), 1056–1060.  https://doi.org/10.1126/science.1089591 CrossRefPubMedGoogle Scholar
  91. 91.
    Sheehy A.M., Gaddis N.C., Malim M.H. 2003. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9 (11), 1404–1407.  https://doi.org/10.1038/nm945 CrossRefPubMedGoogle Scholar
  92. 92.
    Kim E.-Y., Lorenzo-Redondo R., Little S.J., Chung Y.-S., Phalora P.K., Maljkovic Berry I., Archer J., Penugonda S., Fischer W., Richman D.D., Bhattacharya T., Malim M.H., Wolinsky S.M. 2014. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog. 10 (7), e1004281.  https://doi.org/10.1371/journal.ppat.1004281 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Fourati S., Malet I., Binka M., Boukobza S., Wirden M., Sayon S., Simon A., Katlama C., Simon V., Calvez V., Marcelin A.-G. 2010. Partially active HIV-1 Vif alleles facilitate viral escape from specific antiretrovirals. AIDS. 24 (15), 2313–2321.  https://doi.org/10.1097/QAD.0b013e32833e515a CrossRefPubMedGoogle Scholar
  94. 94.
    Dicks M.D.J., Goujon C., Pollpeter D., Betancor G., Apolonia L., Bergeron J.R.C., Malim M.H. 2016. Oligomerization requirements for MX2-mediated suppression of HIV-1 infection. J. Virol. 90 (1), 22–32.  https://doi.org/10.1128/JVI.02247-15 CrossRefPubMedGoogle Scholar
  95. 95.
    Haller O., Kochs G. 2011. Human MxA protein: An interferon-induced dynamin-like GTPase with broad antiviral activity. J. Interf. Cytokine Res. 31 (1), 79–87.  https://doi.org/10.1089/jir.2010.0076 CrossRefGoogle Scholar
  96. 96.
    Matreyek K.A., Wang W., Serrao E., Singh P.K., Levin H.L., Engelman A. 2014. Host and viral determinants for MxB restriction of HIV-1 infection. Retrovirology. 11 (1), 90.  https://doi.org/10.1186/s12977-014-0090-z CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Fribourgh J.L., Nguyen H.C., Matreyek K.A., Alvarez F.J.D., Summers B.J., Dewdney T.G., Aiken C., Zhang P., Engelman A., Xiong Y. 2014. Structural insight into HIV-1 restriction by MxB. Cell Host Microbe. 16 (5), 627–638.  https://doi.org/10.1016/j.chom.2014.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Goujon C., Greenbury R.A., Papaioannou S., Doyle T., Malim M.H. 2015. A triple-arginine motif in the amino-terminal domain and oligomerization are required for HIV-1 inhibition by human MX2. J. Virol. 89 (8), 4676–4680.  https://doi.org/10.1128/JVI.00169-15 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Fricke T., White T.E., Schulte B., de Souza Aranha Vieira D.A., Dharan A., Campbell E.M., Brandariz-Nuñez A., Diaz-Griffero F. 2014. MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1. Retrovirology. 11 (1), 68.  https://doi.org/10.1186/s12977-014-0068-x CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Nakayama E.E., Saito A., Sultana T., Jin Z., Nohata K., Shibata M., Hosoi M., Motomura K., Shioda T., Sangkitporn S., Loket R., Saeng-Aroon S. 2018. Naturally occurring mutations in HIV-1 CRF01_AE capsid affect viral sensitivity to restriction factors. AIDS Res. Hum. Retrov. 34 (4), 382–392.  https://doi.org/10.1089/AID.2017.0212 CrossRefGoogle Scholar
  101. 101.
    Wei W., Guo H., Ma M., Markham R., Yu X.-F. 2016. Accumulation of MxB/Mx2-resistant HIV-1 capsid variants during expansion of the HIV-1 epidemic in human populations. EBioMedicine. 8, 230–236.  https://doi.org/10.1016/j.ebiom.2016.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mavrommatis E., Fish E.N., Platanias L.C. 2013. The schlafen family of proteins and their regulation by interferons. J. Interferon Cytokine Res. 33 (4), 206–210.  https://doi.org/10.1089/jir.2012.0133 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Coccia E.M., Krust B., Hovanessian A.G. 1994. Specific inhibition of viral protein synthesis in HIV-infected cells in response to interferon treatment. J. Biol. Chem. 269 (37), 23087–23094. http://www.ncbi. nlm.nih.gov/pubmed/7521875.PubMedGoogle Scholar
  104. 104.
    Stabell A.C., Hawkins J., Li M., Gao X., David M., Press W.H., Sawyer S.L. 2016. Non-human primate schlafen11 inhibits production of both host and viral proteins. PLOS Pathog. 12 (12), e1006066.  https://doi.org/10.1371/journal.ppat.1006066 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Tada T., Zhang Y., Koyama T., Tobiume M., Tsunetsugu-Yokota Y., Yamaoka S., Fujita H., Tokunaga K. 2015. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins. Nat. Med. 21 (12), 1502–1507.  https://doi.org/10.1038/nm.3956 CrossRefPubMedGoogle Scholar
  106. 106.
    Ohmura-Hoshino M., Matsuki Y., Aoki M., Goto E., Mito M., Uematsu M., Kakiuchi T., Hotta H., Ishido S. 2006. Inhibition of MHC class II expression and immune responses by c-MIR. J. Immunol. 177 (1), 341–354. http://www.ncbi.nlm.nih.gov/pubmed/16785530.CrossRefPubMedGoogle Scholar
  107. 107.
    van de Kooij B., Verbrugge I., de Vries E., Gijsen M., Montserrat V., Maas C., Neefjes J., Borst J. 2013. Ubiquitination by the membrane-associated RING-CH-8 (MARCH-8. ligase controls steady-state cell surface expression of tumor necrosis factor-related apoptosis inducing ligand (TRAIL. receptor 1. J. Biol. Chem. 288 (9), 6617–6628.  https://doi.org/10.1074/jbc.M112.448209 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Usami Y., Wu Y., Göttlinger H.G. 2015. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature. 526 (7572), 218–223.  https://doi.org/10.1038/nature15400 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Inuzuka M., Hayakawa M., Ingi T. 2005. Serinc, an activity-regulated protein family, incorporates serine into membrane lipid synthesis. J. Biol. Chem. 280 (42), 35776–35783.  https://doi.org/10.1074/jbc.M505712200 CrossRefPubMedGoogle Scholar
  110. 110.
    Zhang X., Zhou T., Yang J., Lin Y., Shi J., Zhang X., Frabutt D.A., Zeng X., Li S., Venta P.J., Zheng Y.-H. 2017. Identification of SERINC5-001 as the predominant spliced isoform for HIV-1 restriction. J. Virol. 91 (10), e00137-17.  https://doi.org/10.1128/JVI.00137-17 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Rosa A., Chande A., Ziglio S., De Sanctis V., Bertorelli R., Goh S.L., McCauley S.M., Nowosielska A., Antonarakis S.E., Luban J., Santoni F.A., Pizzato M. 2015. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation. Nature. 526 (7572), 212–217.  https://doi.org/10.1038/nature15399 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Sood C., Marin M., Chande A., Pizzato M., Meli-kyan G.B. 2017. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J. Biol. Chem. 292 (14), 6014–6026.  https://doi.org/10.1074/jbc.M117.777714 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Beitari S., Ding S., Pan Q., Finzi A., Liang C. 2017. Effect of HIV-1 Env on SERINC5 antagonism. J. Virol. 91 (4), e02214-16.  https://doi.org/10.1128/JVI.02214-16 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Matheson N.J., Sumner J., Wals K., Rapiteanu R., Weekes M.P., Vigan R., Weinelt J., Schindler M., Antrobus R., Costa A.S.H., Frezza C., Clish C.B., Neil S.J.D., Lehner P.J. 2015. Cell surface proteomic map of HIV infection reveals antagonism of amino acid metabolism by Vpu and Nef. Cell Host Microbe. 18 (4), 409–423.  https://doi.org/10.1016/j.chom.2015.09.003 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Dai W., Usami Y., Wu Y., Göttlinger H. 2018. A long cytoplasmic loop governs the sensitivity of the anti-viral host protein SERINC5 to HIV-1 Nef. Cell Rep. 22 (4), 869–875.  https://doi.org/10.1016/j.celrep.2017.12.082 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Sauter D., Schindler M., Specht A., Landford W.N., Münch J., Kim K.-A., Votteler J., Schubert U., Bibollet-Ruche F., Keele B.F., Takehisa J., Ogando Y., Ochsenbauer C., Kappes J.C., Ayouba A., et al. 2009. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe. 6 (5), 409–421.  https://doi.org/10.1016/j.chom.2009.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Jia B., Serra-Moreno R., Neidermyer W., Rahmberg A., Mackey J., Fofana I. Ben, Johnson W.E., Westmoreland S., Evans D.T. 2009. Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by Tetherin/BST2. PLoS Pathog. 5 (5), e1000429.  https://doi.org/10.1371/journal.ppat.1000429 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Sauter D., Hué S., Petit S.J., Plantier J.-C., Towers G.J., Kirchhoff F., Gupta R.K. 2011. HIV-1 group P is unable to antagonize human tetherin by Vpu, Env or Nef. Retrovirology. 8 (1), 103.  https://doi.org/10.1186/1742-4690-8-103 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Sauter D., Unterweger D., Vogl M., Usmani S.M., Heigele A., Kluge S.F., Hermkes E., Moll M., Barker E., Peeters M., Learn G.H., Bibollet-Ruche F., Fritz J.V., Fackler O.T., Hahn B.H., Kirchhoff F. 2012. Human tetherin exerts strong selection pressure on the HIV-1 group N Vpu protein. PLoS Pathog. 8 (12), e1003093.  https://doi.org/10.1371/journal.ppat.1003093 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Zhang F., Wilson S.J., Landford W.C., Virgen B., Gregory D., Johnson M.C., Munch J., Kirchhoff F., Bieniasz P.D., Hatziioannou T. 2009. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe. 6 (1), 54–67.  https://doi.org/10.1016/j.chom.2009.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Strebel K., Klimkait T., Maldarelli F., Martin M.A. 1989. Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J. Virol. 63 (9), 3784–3791. http://www.ncbi.nlm.nih.gov/ pubmed/2788224.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Terwilliger E.F., Cohen E.A., Lu Y.C., Sodroski J.G., Haseltine W.A. 1989. Functional role of human immunodeficiency virus type 1 vpu. Proc. Natl. Acad. Sci. U. S. A. 86 (13), 5163–5167. http://www.ncbi.nlm.nih.gov/ pubmed/2472639.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Klimkait T., Strebel K., Hoggan M.D., Martin M.A., Orenstein J.M. 1990. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J. Virol. 64 (2), 621–629. http://www.ncbi.nlm.nih.gov/pubmed/2404139.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Willey R.L., Maldarelli F., Martin M.A., Strebel K. 1992. Human immunodeficiency virus type 1 Vpu protein regulates the formation of intracellular gp160-CD4 complexes. J. Virol. 66 (1), 226–234. http://www.ncbi.nlm.nih.gov/pubmed/1727486.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Neil S.J.D., Eastman S.W., Jouvenet N., Bieniasz P.D. 2006. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2 (5), 354–367.  https://doi.org/10.1371/journal.ppat.0020039 CrossRefGoogle Scholar
  126. 126.
    Sakai H., Tokunaga K., Kawamura M., Adachi A. 1995. Function of human immunodeficiency virus type 1 Vpu protein in various cell types. J. Gen. Virol. 76 (11), 2717–2722.  https://doi.org/10.1099/0022-1317-76-11-2717 CrossRefPubMedGoogle Scholar
  127. 127.
    Kupzig S., Korolchuk V., Rollason R., Sugden A., Wilde A., Banting G. 2003. Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic. 4 (10), 694–709. http://www.ncbi. nlm.nih.gov/pubmed/12956872.CrossRefPubMedGoogle Scholar
  128. 128.
    Sauter D. 2014. Counteraction of the multifunctional restriction factor tetherin. Front. Microbiol. 5, 1–14.  https://doi.org/10.3389/fmicb.2014.00163 CrossRefGoogle Scholar
  129. 129.
    Goto T., Kennel S.J., Abe M., Takishita M., Kosaka M., Solomon A., Saito S. 1994. A novel membrane antigen selectively expressed on terminally differentiated human B cells. Blood. 84 (6), 1922–1930. http://www.ncbi.nlm.nih.gov/pubmed/8080996.PubMedGoogle Scholar
  130. 130.
    Masuyama N., Kuronita T., Tanaka R., Muto T., Hirota Y., Takigawa A., Fujita H., Aso Y., Amano J., Tanaka Y. 2009. HM1.24 is internalized from lipid rafts by clathrin-mediated endocytosis through interaction with α-adaptin. J. Biol. Chem. 284 (23), 15927–15941.  https://doi.org/10.1074/jbc.M109.005124 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Perez-Caballero D., Zang T., Ebrahimi A., McNatt M.W., Gregory D.A., Johnson M.C., Bieniasz P.D. 2009. Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell. 139(3), 499–511.  https://doi.org/10.1016/j.cell.2009.08.039 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Hammonds J., Spearman P. 2009. Tetherin is as tetherin does. Cell. 139 (3), 456–457.  https://doi.org/10.1016/j.cell.2009.10.011 CrossRefPubMedGoogle Scholar
  133. 133.
    Venkatesh S., Bieniasz P.D. 2013. Mechanism of HIV-1 virion entrapment by tetherin. PLoS Pathog. 9 (7), e1003483.  https://doi.org/10.1371/journal.ppat.1003483 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Bieniasz P.D. 2009. The cell biology of HIV-1 virion genesis. Cell Host Microbe. 5 (6), 550–558.  https://doi.org/10.1016/j.chom.2009.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Andrew A.J., Miyagi E., Kao S., Strebel K. 2009. The formation of cysteine-linked dimers of BST-2/tetherin is important for inhibition of HIV-1 virus release but not for sensitivity to Vpu. Retrovirology. 6 (1), 80.  https://doi.org/10.1186/1742-4690-6-80 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Ohtomo T., Sugamata Y., Ozaki Y., Ono K., Yoshimura Y., Kawai S., Koishihara Y., Ozaki S., Kosaka M., Hirano T., Tsuchiya M. 1999. Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells. Biochem. Biophys. Res. Commun. 258 (3), 583–591.  https://doi.org/10.1006/bbrc.1999.0683 CrossRefPubMedGoogle Scholar
  137. 137.
    Jolly C., Kashefi K., Hollinshead M., Sattentau Q.J. 2004. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199 (2), 283–293.  https://doi.org/10.1084/jem.20030648 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Sattentau Q.J. 2011. The direct passage of animal viruses between cells. Curr. Opin. Virol. 1 (5), 396–402.  https://doi.org/10.1016/j.coviro.2011.09.004 CrossRefPubMedGoogle Scholar
  139. 139.
    Casartelli N., Sourisseau M., Feldmann J., Guivel-Benhassine F., Mallet A., Marcelin A.-G., Guatelli J., Schwartz O. 2010. Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog. 6 (6), e1000955.  https://doi.org/10.1371/journal.ppat.1000955 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Kuhl B.D., Sloan R.D., Donahue D.A., Bar-Magen T., Liang C., Wainberg M.A. 2010. Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology. 7 (1), 115.  https://doi.org/10.1186/1742-4690-7-115 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Blanchet F.P., Stalder R., Czubala M., Lehmann M., Rio L., Mangeat B., Piguet V. 2013. TLR-4 engagement of dendritic cells confers a BST-2/tetherin-mediated restriction of HIV-1 infection to CD4+ T cells across the virological synapse. Retrovirology. 10 (1), 6.  https://doi.org/10.1186/1742-4690-10-6 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Giese S., Marsh M. 2014. Tetherin can restrict cell-free and cell-cell transmission of HIV from primary macrophages to T cells. PLoS Pathog. 10 (7).  https://doi.org/10.1371/journal.ppat.1004189
  143. 143.
    Jolly C., Booth N.J., Neil S.J.D. 2010. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J. Virol. 84 (23), 12185–12199.  https://doi.org/10.1128/JVI.01447-10 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Coleman C.M., Spearman P., Wu L. 2011. Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef. Retrovirology. 8 (1), 26.  https://doi.org/10.1186/1742-4690-8-26 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Zhong P., Agosto L.M., Ilinskaya A., Dorjbal B., Truong R., Derse D., Uchil P.D., Heidecker G., Mothes W. 2013. Cell-to-cell transmission can overcome multiple donor and target cell barriers imposed on cell-free HIV. PLoS One. 8 (1), e53138.  https://doi.org/10.1371/journal.pone.0053138 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Mazurov D., Ilinskaya A., Heidecker G., Lloyd P., Derse D. 2010. Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Pathog. 6 (2), e1000788.  https://doi.org/10.1371/journal.ppat.1000788 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Shunaeva A., Potashnikova D., Pichugin A., Mishina A., Filatov A., Nikolaitchik O., Hu W.-S., Mazurov D. 2015. Improvement of HIV-1 and human T cell lymphotropic virus type 1 replication-dependent vectors via optimization of reporter gene reconstitution and modification with intronic short hairpin RNA. J. Virol. 89 (20), 10591–10601.  https://doi.org/10.1128/JVI.01940-15 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Matsuda A., Suzuki Y., Honda G., Muramatsu S., Matsuzaki O., Nagano Y., Doi T., Shimotohno K., Harada T., Nishida E., Hayashi H., Sugano S. 2003. Large-scale identification and characterization of human genes that activate NF-κB and MAPK signaling pathways. Oncogene. 22 (21), 3307–3318.  https://doi.org/10.1038/sj.onc.1206406 CrossRefPubMedGoogle Scholar
  149. 149.
    Galão R.P., Le Tortorec A., Pickering S., Kueck T., Neil S.J.D. 2012. Innate sensing of HIV-1 assembly by tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe. 12 (5), 633–644.  https://doi.org/10.1016/j.chom.2012.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Tokarev A., Suarez M., Kwan W., Fitzpatrick K., Singh R., Guatelli J. 2013. Stimulation of NF-κB activity by the HIV restriction factor BST2. J. Virol. 87 (4), 2046–2057.  https://doi.org/10.1128/JVI.02272-12 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Kobayashi T., Ode H., Yoshida T., Sato K., Gee P., Yamamoto S.P., Ebina H., Strebel K., Sato H., Koyanagi Y. 2011. Identification of amino acids in the human tetherin transmembrane domain responsible for HIV-1 Vpu interaction and susceptibility. J. Virol. 85 (2), 932–945.  https://doi.org/10.1128/JVI.01668-10 CrossRefPubMedGoogle Scholar
  152. 152.
    Douglas J.L., Viswanathan K., McCarroll M.N., Gustin J.K., Fruh K., Moses A.V. 2009. Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a TrCP-dependent mechanism. J. Virol. 83 (16), 7931–7947.  https://doi.org/10.1128/JVI.00242-09 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Liu L., Oliveira N.M., Cheney K.M., Pade C., Dreja H., Bergin A.-M.H., Borgdorff V., Beach D.H., Bishop C.L., Dittmar M.T., McKnight Á. 2011. A whole genome screen for HIV restriction factors. Retrovirology. 8 (1), 94.  https://doi.org/10.1186/1742-4690-8-94 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Zhou H., Xu M., Huang Q., Gates A.T., Zhang X.D., Castle J.C., Stec E., Ferrer M., Strulovici B., Hazuda D.J., Espeseth A.S. 2008. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe. 4 (5), 495–504.  https://doi.org/10.1016/j.chom.2008.10.004 CrossRefPubMedGoogle Scholar
  155. 155.
    Brass A.L., Dykxhoorn D.M., Benita Y., Yan N., Engelman A., Xavier R.J., Lieberman J., Elledge S.J. 2008. Identification of host proteins required for HIV infection through a functional genomic screen. Science. 319 (5865), 921–926.  https://doi.org/10.1126/science.1152725 CrossRefPubMedGoogle Scholar
  156. 156.
    Park R.J., Wang T., Koundakjian D., Hultquist J.F., Lamothe-Molina P., Monel B., Schumann K., Yu H., Krupzcak K.M., Garcia-Beltran W., Piechocka-Trocha A., Krogan N.J., Marson A., Sabatini D.M., Lander E.S., Hacohen N., Walker B.D. 2017. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat. Genet. 49 (2), 193–203.  https://doi.org/10.1038/ng.3741 CrossRefPubMedGoogle Scholar
  157. 157.
    König R., Zhou Y., Elleder D., Diamond T.L., Bonamy G.M.C., Irelan J.T., Chiang C.-Y., Tu B.P., De Jesus P.D., Lilley C.E., Seidel S., Opaluch A.M., Caldwell J.S., Weitzman M.D., Kuhen K.L., et al. 2008. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell. 135 (1), 49–60.  https://doi.org/10.1016/j.cell.2008.07.032 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Nguyen D.G., Yin H., Zhou Y., Wolff K.C., Kuhen K.L., Caldwell J.S. 2007. Identification of novel therapeutic targets for HIV infection through functional genomic cDNA screening. Virology. 362 (1), 16–25.  https://doi.org/10.1016/J.VIROL.2006.11.036 CrossRefPubMedGoogle Scholar
  159. 159.
    Gélinas J.-F., Gill D.R., Hyde S.C. 2018. Multiple inhibitory factors act in the late phase of HIV-1 replication: A systematic review of the literature. Microbiol. Mol. Biol. Rev. 82 (1), e00051-17.  https://doi.org/10.1128/MMBR.00051-17 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. A. Zotova
    • 1
    • 2
    Email author
  • A. A. Atemasova
    • 1
  • A. V. Filatov
    • 3
  • D. V. Mazurov
    • 2
    • 3
  1. 1.Moscow State University, Faculty of BiologyMoscowRussia
  2. 2.Cell and Gene Technology Group, Institute of Gene Biology, Russian Academy of SciencesMoscowRussia
  3. 3.National Research Center—Institute of Immunology of Federal Medical-Biological Agency of RussiaMoscowRussia

Personalised recommendations