Molecular Biology

, Volume 53, Issue 2, pp 198–211 | Cite as

Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts

  • A. V. Spirov
  • E. M. MyasnikovaEmail author


The ensemble of gap genes is one of the best studied and most conserved gene regulatory networks (GRNs). Gap genes, such as hunchback (hb), Krüppel (Kr), pou-domain (pdm; pdm1 and pdm2), and castor (cas) genes belong to the well-known families Ikaros (IKZF1/hb), Krüppel-like factor (KLF/Kr), POU domain (BRN1/pdm-1, BRN2/pdm-2), and Castor homologs (CASZ1/cas), which are present in all vertebrate genomes and code for site-specific transcription factors. Gap genes form a core of an embryonic segmentation control subnetwork and define the temporal identity of neuroblasts in Drosophila embryos. The key gene regulatory mechanisms whereby the gap genes govern segmentation and neurogenesis are similar. Moreover, the gap genes are evolutionarily conserved in terms of their function as a core of the temporal specification GRN during neurogenesis in vertebrates, including humans. A problem of special interest is to understand the extent of conservation for the molecular mechanisms involved in the regulatory functions of the gap genes. The problem is especially important because human orthologs of the gap gens are crucial for many pathophysiological processes, including tumor growth suppression.


gene regulatory networks regulatory motifs embryonic segmentation embryonic neurogenesis temporary identity of neuroblasts transcription factors homodimerization heterodimerization gene autoregulation 



  1. 1.
    Pinnell J., Lindeman P.S., Colavito S., Lowe C., Savage R.M. 2006. The divergent roles of the segmentation gene hunchback. Integr. Comp. Biol. 46, 519–532.CrossRefPubMedGoogle Scholar
  2. 2.
    John L.B., Yoong S., Ward A.C. 2009. Evolution of the ikaros gene family: Implications for the origins of adaptive immunity. J. Immunol. 182 (8), 4792–4799. CrossRefPubMedGoogle Scholar
  3. 3.
    Georgopoulos K., Moore D.D., Derfler B. 1992. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science. 258 (5083), 808–812.CrossRefPubMedGoogle Scholar
  4. 4.
    Hahm K., Ernst P., Lo K., Kim G.S., Turck C., Smale S.T. 1994. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol. 14 (11), 7111–7123.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kastner P., Chan S. 2011. Role of Ikaros in T-cell acute lymphoblastic leukemia. World J. Biol. Chem. 2 (6), 108–114.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Konstantinides N., Rossi A.M., Desplan C. 2015. Common temporal identity factors regulate neuronal diversity in fly ventral nerve cord and mouse retina. Neuron. 85 (3), 447–449.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Virden R.A., Thiele C.J., Liu Z. 2012. Characterization of critical domains within the tumor suppressor CASZ1 required for transcriptional regulation and growth suppression. Mol. Cell. Biol. 32 (8), 1518–1528.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McConnell B.B., Yang V.W. 2010. Mammalian Krüppel-like factors in health and diseases. Physiol. Rev. 90 (4), 1337–1381. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Welstead G.G., Brambrink T., Jaenisch R. 2008. Generating iPS cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J. Vis. Exp. pii: 734.
  10. 10.
    Isshiki T., Pearson B., Holbrook S., Doe C.Q. 2001. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell. 106, 511–521.CrossRefPubMedGoogle Scholar
  11. 11.
    Dominguez M.H., Ayoub A.E., Rakic P. 2013. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb. Cortex. 23 (11), 2632–2643.CrossRefPubMedGoogle Scholar
  12. 12.
    Gold D.A., Gates R.D., Jacobs D.K. 2014. The early expansion and evolutionary dynamics of POU class genes. Mol. Biol. Evol. 31, 3136–3147.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jaeger J. 2011. The gap gene network. Cell. Mol. Life Sci. 68 (2), 243–274.CrossRefPubMedGoogle Scholar
  14. 14.
    Cockerill K.A., Billin A.N., Poole S.J. 1993. Regulation of expression domains and effects of ectopic expression reveal gap gene-like properties of the linked pdm genes of Drosophila. Mech. Dev. 41, 139–153.CrossRefPubMedGoogle Scholar
  15. 15.
    Li X., Chen Z., Desplan C. 2013. Temporal patterning of neural progenitors in Drosophila. Curr. Topics Dev. Biol. 105, 69–96. CrossRefGoogle Scholar
  16. 16.
    Rübel O., Weber G.H., Keränen S.V.E., Fowlkes C.C., Luengo Hendriks C.L.L., Simirenko L., Shah N.Y., Eisen M.B., Biggin M.D., Hagen H., Sudar D., Malik J., Knowles D.W., Hamann B. 2006. PointCloudXplore: A visualization tool for 3D gene expression data. In: Visualization of Large and Unstructured Data Sets, GI Lecture Notes in Informatics, vol. S-4. Eds. Hagen H., Kerren A., Dannenmann P. Bonn, Germany: Gesellschaftfuer Informatik, pp. 107–117.Google Scholar
  17. 17.
    Bhat K.M. 1999). Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays. 21, 472–485.CrossRefPubMedGoogle Scholar
  18. 18.
    Dessaud E., McMahon A.P., Briscoe J. 2008. Pattern formation in the vertebrate neural tube: A sonic hedgehog morphogen-regulated transcriptional network. Development. 135, 2489–2503.CrossRefPubMedGoogle Scholar
  19. 19.
    Doe C.Q. 2008. Neural stem cells: Balancing self-renewal with differentiation. Development. 135, 1575–1587.CrossRefPubMedGoogle Scholar
  20. 20.
    Knoblich J.A. 2010. Asymmetric cell division: Recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11, 849–860.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lin S., Lee T. 2012. Generating neuronal diversity in the Drosophila central nervous system. Dev. Dyn. 241, 57–68.CrossRefPubMedGoogle Scholar
  22. 22.
    Pearson B.J., Doe C.Q. 2004. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol. 20, 619–647.CrossRefPubMedGoogle Scholar
  23. 23.
    Kao C.F., Lee T. 2010. Birth time/order-dependent neuron type specification. Curr. Opin. Neurobiol. 20, 14–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Brand A.H., Livesey F.J. 2011. Neural stem cell biology in vertebrates and invertebrates: More alike than different? Neuron. 70, 719–729.CrossRefPubMedGoogle Scholar
  25. 25.
    Maurange C. 2012. Temporal specification of neural stem cells: Insights from Drosophila neuroblasts. Curr. Top. Dev. Biol. 98, 199–228.CrossRefPubMedGoogle Scholar
  26. 26.
    Baek M., Mann R.S. 2009. Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosophila. J. Neurosci. 29, 6904–6916.CrossRefPubMedGoogle Scholar
  27. 27.
    Bossing T., Udolph G., Doe C.Q., Technau G.M. 1996. The embryonic central nervous system lineages of Drosophila melanogaster: I. Neuroblast lineages derived from the ventral half of the neuroectoderm. Dev. Biol. 179, 41–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Jefferis G.S., Marin E.C., Stocker R.F., Luo L. 2001. Target neuron prespecification in the olfactory map of Drosophila. Nature. 414, 204–208.CrossRefPubMedGoogle Scholar
  29. 29.
    Karcavich R., Doe C.Q. 2005. Drosophila neuroblast 7-3 cell lineage: A model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J. Comp. Neurol. 481, 240–251.CrossRefPubMedGoogle Scholar
  30. 30.
    Pearson B.J., Doe C.Q. 2003. Regulation of neuroblast competence in Drosophila. Nature. 425, 624–628.CrossRefPubMedGoogle Scholar
  31. 31.
    Schmid A., Chiba A., Doe, C.Q. 1999. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. Development. 126, 4653–4689.PubMedGoogle Scholar
  32. 32.
    Schmidt H., Rickert C., Bossing T., Vef O., Urban J., Technau G.M. 1997). The embryonic central nervous system lineages of Drosophila melanogaster: 2. Neuroblast lineages derived from the dorsal part of the neuroectoderm. Dev. Biol. 189, 186–204.CrossRefPubMedGoogle Scholar
  33. 33.
    Skeath J.B., Thor S. 2003. Genetic control of Drosophila nerve cord development. Curr. Opin. Neurobiol. 13, 8–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Yu H.H., Kao C.F., He Y., Ding P., Kao J.C., Lee T. 2010. A complete developmental sequence of a Drosophila neuronal lineage as revealed by twin-spot MARCM. PLoS Biol. 8, e1000461.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jaeger J., Manu, Reinitz J. 2012. Drosophila blastoderm patterning. Curr.Opin. Genet. Dev. 22, 533–541.CrossRefPubMedGoogle Scholar
  36. 36.
    Skeath, J.B. 1999. At the nexus between pattern formation and cell-type specification: The generation of individual neuroblast fates in the Drosophila embryonic central nervous system. Bioessays. 21, 922–931.CrossRefPubMedGoogle Scholar
  37. 37.
    Martin-Bermudo M.D., Martinez C., Rodriguez A., Jimenez F. 1991. Distribution and function of the lethal of scute gene product during early neurogenesis in Drosophila. Development. 113, 445–454.PubMedGoogle Scholar
  38. 38.
    Skeath J.B., Carroll S.B. 1992). Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development. 114, 939–946.PubMedGoogle Scholar
  39. 39.
    Technau G.M., Berger C., Urbach R. 2006. Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev. Dyn. 235, 861–869.CrossRefPubMedGoogle Scholar
  40. 40.
    Hwang H.L., Rulifson E. 2011. Serial specification of diverse neuroblast identities from a neurogenic placode by Notch and Egfr signaling. Development. 138, 2883–2893.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kohwi M., Doe C.Q. 2013. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823–838.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Broadus J., Skeath J.B., Spana E.P., Bossing T., Technau G., Doe C.Q. 1995. New neuroblast markers and the origin of the aCC/pCC neurons in the Drosophila central nervous system. Mech. Dev. 53, 393–402.CrossRefPubMedGoogle Scholar
  43. 43.
    Doe C.Q., Technau G.M. 1993. Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci. 16, 510–514.CrossRefPubMedGoogle Scholar
  44. 44.
    Egger B., Chell J.M., Brand A.H. 2008. Insights into neural stem cell biology from flies. Philos. Trans. R. Soc. Lond. B. 363, 39–56.CrossRefGoogle Scholar
  45. 45.
    Tran K.D., Doe C.Q. 2008. Pdm and Castor close successive temporal identity windows in the NB3‑1 lineage. Development. 135, 3491–3499.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kambadur R., Koizumi K., Stivers C., Nagle J., Poole S.J., Odenwald W.F. 1998. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev. 12, 246–260.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Baumgardt M., Karlsson D., Terriente J., Diaz-Benjumea F. J., Thor S. 2009. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell. 139, 969–982.CrossRefPubMedGoogle Scholar
  48. 48.
    Brody T., Odenwald W.F. 2000. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34–44.CrossRefPubMedGoogle Scholar
  49. 49.
    Grosskortenhaus R., Pearson B. J., Marusich A., Doe C.Q. 2005. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell. 8, 193–202.CrossRefPubMedGoogle Scholar
  50. 50.
    Romani S., Jimenez F., Hoch M., Patel N.H., Taubert H., Jackle H. 1996. Kruppel, a Drosophila segmentation gene, participates in the specification of neurons and glial cells. Mech. Dev. 60, 95–107.CrossRefPubMedGoogle Scholar
  51. 51.
    Benito-Sipos J., Estacio-Gomez A., Moris-Sanz M., Baumgardt M., Thor S., Diaz-Benjumea F. J. 2010). A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS. Development. 137, 3327–3336.CrossRefPubMedGoogle Scholar
  52. 52.
    Cleary M.D., Doe C.Q. 2006. Regulation of neuroblast competence: Multiple temporal identity factors specify distinct neuronal fates within a single early competence window. Genes Dev. 20, 429–434.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Grosskortenhaus R., Robinson K.J., Doe C.Q. 2006. Pdm and Castor specify lateborn motor neuron identity in the NB7-1 lineage. Genes Dev. 20, 2618–2627.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Novotny T., Eiselt R., Urban J. 2002. Hunchback is required for the specification of the early sublineage of neuroblast 7-3 in the Drosophila central nervous system. Development. 129, 1027–1036.PubMedGoogle Scholar
  55. 55.
    Cenci C., Gould A.P. 2005. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development. 132, 3835–3845.CrossRefPubMedGoogle Scholar
  56. 56.
    Maurange C., Cheng L., Gould A.P. 2008. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell. 133, 891–902.CrossRefPubMedGoogle Scholar
  57. 57.
    Bayraktar O.A., Doe C.Q. 2013. Combinatorial temporal patterning in progenitors expands neural diversity. Nature. 498, 449–455.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tsuji T., Hasegawa E., Isshiki T. 2008. Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development. 135, 3859–3869.CrossRefPubMedGoogle Scholar
  59. 59.
    Kao C.F., Yu H.H., He Y., Kao J.C., Lee T. 2012. Hierarchical deployment of factors regulating temporal fate in a diverse neuronal lineage of the Drosophila central brain. Neuron. 73, 677–684.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Huang J.D., Dubnicoff T., Liaw G.J., Bai Y., Valentine S.A., Shirokawa J.M., Lengyel J.A., Courey A.J. 1995. Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes Dev. 9, 3177–3189.CrossRefPubMedGoogle Scholar
  61. 61.
    Liaw G.J., Rudolph K.M., Huang J.D., Dubnicoff T., Courey A.J., Lengyel J.A. 1995. The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression. Genes Dev. 9, 3163–3176.CrossRefPubMedGoogle Scholar
  62. 62.
    Lloyd A., Sakonju S. 1991. Characterization of two Drosophila POU domain genes, related to Oct-1 and Oct-2, and the regulation of their expression patterns. Mech. Dev. 36, 87–102.CrossRefPubMedGoogle Scholar
  63. 63.
    Billin A.N., Cockerill K.A., Poole S.J. 1991. Isolation of a family of Drosophila POU domain genes expressed in early development. Mech. Dev. 34, 75–84.CrossRefPubMedGoogle Scholar
  64. 64.
    Nakajima A., Isshiki T., Kaneko K., Ishihara S. 2010. Robustness under functional constraint: The genetic network for temporal expression in Drosophila neurogenesis. PLoS Comput. Biol. 6 (4), e1000760.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kanai M.I., Okabe M., Hiromi Y. 2005. seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev. Cell. 8, 203–213.CrossRefPubMedGoogle Scholar
  66. 66.
    Mettler U., Vogler G., Urban J. 2006. Timing of identity: Spatiotemporal regulation of hunchback in neuroblast lineages of Drosophila by Seven‑up and Prospero. Development. 133, 429–437.CrossRefPubMedGoogle Scholar
  67. 67.
    Zuo P., Stanojević D., Colgan J., Han K., Levine M., Manley J.L. 1991. Activation and repression of transcription by the gap proteins hunchback and Krüppel in cultured Drosophila cells. Genes Dev. 5 (2), 254–264.CrossRefPubMedGoogle Scholar
  68. 68.
    McCarty A.S., Kleiger G., Eisenberg D., Smale S.T. 2003. Selective dimerization of a C2H2 zinc finger subfamily. Mol. Cell. 11 (2), 459–470.CrossRefPubMedGoogle Scholar
  69. 69.
    Sauer F., Jäckle H. 1991. Concentration-dependent transcriptional activation or repression by Krüppel from a single binding site. Nature. 353 (6344), 563–566.CrossRefPubMedGoogle Scholar
  70. 70.
    Perry M.W., Bothma J.P., Luu R.D., Levine M. 2012. Precision of Hunchback expression in the Drosophila embryo. Curr. Biol. 22, 1–6.CrossRefGoogle Scholar
  71. 71.
    Kozlov K., Surkova S., Myasnikova E., Reinitz J., Samsonova M. 2012. Modeling of gap gene expression in Drosophila Krüppel mutants. PLoS Comp. Biol. 8, e1002635.CrossRefGoogle Scholar
  72. 72.
    Surkova S., Golubkova E., Manu, Panok L., Mamon L., Reinitz J., Samsonova M. 2013. Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants. Dev. Biol. 376, 99–112.CrossRefPubMedGoogle Scholar
  73. 73.
    Jaeger J., Surkova S., Blagov M., Janssens H., Kosman D., Myasnikova E., Vanario-Alonso C.E., Samsonova M., Sharp D.H., Reinitz J. 2004. Dynamic control of positional information in the early Drosophila blastoderm. Nature. 430, 368–371.CrossRefPubMedGoogle Scholar
  74. 74.
    Spirov A.V., Myasnikova E.M., Holloway D. 2016. Sequential construction of a model for modular gene expression control, applied to spatial patterning of the Drosophila gene hunchback. J. Bioinform. Comput. Biol. 14, 1641005.CrossRefPubMedGoogle Scholar
  75. 75.
    Ishihara S., Fujimoto K., Shibata T. 2005. Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Genes Cells. 10, 1025–1038.CrossRefPubMedGoogle Scholar
  76. 76.
    Fujimoto K., Ishihara S., Kaneko K. 2008. Network evolution of body plans. PLoS One. 3, e2772CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ishihara S., Shibata T. 2008. Mutual interaction in network motifs robustly sharpens gene expression in developmental processes. J. Theor. Biol. 252, 131–144.CrossRefPubMedGoogle Scholar
  78. 78.
    Tran K.D., Miller M.R., Doe C.Q. 2010. Recombineering Hunchback identifies two conserved domains required to maintain neuroblast competence and specify early-born neuronal identity. Development. 137, 1421–1430.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kehle J., Beuchle D., Treuheit S., Christen B., Kennison J. A., Bienz M., Muller J. 1998. dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science. 282, 1897–1900.CrossRefPubMedGoogle Scholar
  80. 80.
    Li Z., Perez-Casellas L.A., Savic A., Song C., Dovat S. 2011. Ikaros isoforms: The saga continues. World J. Biol. Chem. 2 (6), 140–145.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Arenzana T.A., Schjerven H., Smale S.T. 2015. Regulation of gene expression dynamics during developmental transitions by the Ikaros transcription factor. Genes Dev. 29, 1801–1816.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Peterson K.J., Davidson E.H. 2000. Regulatory evolution and the origin of the bilaterians. Proc. Natl. Acad. Sci. U. S. A. 97, 4430–4433.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Levine M., Tjian R. 2003. Transcription regulation and animal diversity. Nature. 424, 147–151.CrossRefPubMedGoogle Scholar
  84. 84.
    Arthur W., Jowett T., Panchen A. 1999. Segments, limbs, homology, and co-option. Evol. Dev. 1, 74–76.CrossRefPubMedGoogle Scholar
  85. 85.
    Chipman, AD. 2010. Parallel evolution of segmentation by cooption of ancestral gene regulatory networks. Bioessays. 32, 60–70.CrossRefPubMedGoogle Scholar
  86. 86.
    Peel A. 2004. The evolution of arthropod segmentation mechanisms. Bioessays. 26, 1108–1116.CrossRefPubMedGoogle Scholar
  87. 87.
    Peel A., Chipman A.D., Akam M. 2005. Arthropod segmentation: Beyond the Drosophila paradigm. Nat. Rev. Genet. 6, 905–916.CrossRefPubMedGoogle Scholar
  88. 88.
    Peel A.D. 2008. The evolution of developmental gene networks: Lessons from comparative studies on holometabolous insects. Philos. Trans. R. Soc. Lond. B. 363, 1539–1547.CrossRefGoogle Scholar
  89. 89.
    Chipman A.D. 2008. Thoughts and speculations on the ancestral arthropod segmentation pathway. In: Evolving Pathways. Eds. Minelli A., Fusco G. Cambridge, UK: Cambridge Univ. Press, pp. 343–358.Google Scholar
  90. 90.
    Patel N.H., Hayward D.C., Lall S., Pirkl N.R., DiPietro D., Ball E.E. 2001. Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development. 128, 3459–3472.PubMedGoogle Scholar
  91. 91.
    Liu P.Z., Kaufman T.C. 2004. Kruppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segment. Development. 131, 4567–4579.CrossRefPubMedGoogle Scholar
  92. 92.
    Mito T., Sarashina I., Zhang H., Iwahashi A., Okamoto H., Miyawaki K., Shinmyo Y., Ohuchi H., Noji S. 2005. Noncanonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development. 132, 2069–2079.CrossRefPubMedGoogle Scholar
  93. 93.
    Chipman A.D., Stollewerk A. 2006. Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev. Biol. 290, 337–350.CrossRefPubMedGoogle Scholar
  94. 94.
    Schwager E.E., Pechmann M., Feitosa N.M., McGregor A.P., Damen W.G.M. 2009. hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr. Biol. 19, 1333–1340.CrossRefPubMedGoogle Scholar
  95. 95.
    Patel N.H., Ball E.E., Goodman C.S. 1992. Changing role of even-skipped during the evolution of insect pattern formation. Nature. 357, 339–342.CrossRefPubMedGoogle Scholar
  96. 96.
    Patel N.H. 1994. Developmental evolution: Insights from studies of insect segmentation. Science. 266, 581–590.CrossRefPubMedGoogle Scholar
  97. 97.
    Clyde D.E., Corado M.S.G., Wu X., Pare A., Papatsenko D., Small S. 2003. A self-organizing system of repressor gradients establishes segmental complexity in Drosophila. Nature. 426 (6968), 849–853.CrossRefPubMedGoogle Scholar
  98. 98.
    Deutsch J.S. 2004. Segments and parasegments in arthropods: A functional perspective. Bioessays. 26 (10), 1117–1125.CrossRefPubMedGoogle Scholar
  99. 99.
    Damen W.G. 2007. Evolutionary conservation and divergence of the segmentation process in arthropods. Dev. Dyn. 236 (6), 1379–1391.CrossRefPubMedGoogle Scholar
  100. 100.
    Livesey F.J., Cepko C.L. 2001. Vertebrate neural cell-fate determination: Lessons from the retina. Nat. Rev. Neurosci. 2, 109–118.CrossRefPubMedGoogle Scholar
  101. 101.
    Molyneaux B.J., Arlotta P., Menezes J.R., Macklis J.D. 2007. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437.CrossRefPubMedGoogle Scholar
  102. 102.
    Jacob J., Maurange C., Gould A.P. 2008. Temporal control of neuronal diversity: Common regulatory principles in insects and vertebrates? Development. 135, 3481–3489.CrossRefPubMedGoogle Scholar
  103. 103.
    Okano H., Temple S. 2009. Cell types to order: temporal specification of CNS stem cells. Curr. Opin. Neurobiol. 19, 112–119.CrossRefPubMedGoogle Scholar
  104. 104.
    Gaspard N., Bouschet T., Hourez R., Dimidschstein J., Naeije G., van den Ameele J., Espuny-Camacho I., Herpoel A., Passante L., Schiffmann S.N., Gaillard A., Vanderhaeghen P. 2008. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature. 455, 351–357.CrossRefPubMedGoogle Scholar
  105. 105.
    Naka H., Nakamura S., Shimazaki T., Okano H. 2008. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat. Neurosci. 11, 1014–1023.CrossRefPubMedGoogle Scholar
  106. 106.
    Shen Q., Wang Y., Dimos J.T., Fasano C.A., Phoenix T.N., Lemischka I.R., Ivanova N.B., Stifani S., Morrisey E.E., Temple S. 2006. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751.CrossRefPubMedGoogle Scholar
  107. 107.
    Shitamukai A., Konno, D., Matsuzaki F. 2011. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695.CrossRefPubMedGoogle Scholar
  108. 108.
    Conduit P.T., Raff J.W. 2010. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20, 2187–2192.CrossRefPubMedGoogle Scholar
  109. 109.
    Januschke J., Llamazares S., Reina J., Gonzalez C. 2011. Drosophila neuroblasts retain the daughter centrosome. Nat. Commun. 2, 243.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Wang X.,Tsai J.W., Imai J.H., Lian W.N., Vallee R.B., Shi S.H. 2009. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature. 461, 947–955.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Gao P., Postiglione M.P., Krieger T.G., Hernandez L., Wang C., Han Z., Streicher C., Papusheva E., Insolera R., Chugh K., Kodish O., Huang K., Simons B.D., Luo L., Hippenmeyer S., Shi S.H. 2014. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell. 159, 775–788.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Mattar P., Ericson J., Blackshaw S., Cayouette M. 2015. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron. 85, 497–504.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Homem C.C.F., Repic M., Knoblich J.A. 2015. Proliferation control in neural stem and progenitor cells. Nat. Rev. Neurosci. 16 (11), 647–659.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations