Molecular Biology

, Volume 53, Issue 2, pp 192–197 | Cite as

Prokaryotic and Mitochondrial Linear Genomes: Their Genesis, Evolutionary Significance, and the Problem of Replicating Chromosome Ends

  • M. A. MoldovanEmail author


Bacterial chromosomes are widely thought of as circular DNA molecules. However, linear bacterial chromosomes, as well as linear mitochondrial and plastid chromosomes, are fairly common. The most frequent causes of linearization are reparation system defects, incorporation of plasmids in the genome, and recombination compromising the circular topology of chromosomes. Genomes of some bacterial species had undergone frequent linearization–circularization events, which resulted in an increased variability of gene content at linear chromosome ends. Similarly to eukaryotes, bacteria that have linear genomes face the problem of end replication, which different species solve in a variety of ways. A theoretically important issue is the adaptive value of chromosome linearization. This review discusses theories concerning the evolution of linear genomes and supporting experiments. The most common mechanisms of linear bacterial genomes replication and possible ways of their emergence are also considered.


linear genomes prokaryotic chromosome chromosome topology mitochondrial chromosome genome linearization ends replication 



  1. 1.
    Volff J.N., Altenbuchner J. 2000. A new beginning with new ends: Linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186 (2), 143–150.CrossRefGoogle Scholar
  2. 2.
    Cairns J. 1963. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 6, 208–213.CrossRefGoogle Scholar
  3. 3.
    Gray M.W. 2012. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4, a011403.CrossRefGoogle Scholar
  4. 4.
    Woese C.R., Stackebrandt E., Macke T.J., Fox G.E. 1985. A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol. 6, 143–151.CrossRefGoogle Scholar
  5. 5.
    Woese C.R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221–271.Google Scholar
  6. 6.
    Sagan L. 1967. On the origin of mitosing cells. J. Theor. Biol. 14 (3), 255–274.CrossRefGoogle Scholar
  7. 7.
    Casjens S. 1998. The diverse and dynamic structure of bacterial genomes. Annu. Rev. Genet. 32, 339–377.CrossRefGoogle Scholar
  8. 8.
    Ferdows M.S., Barbour A.G. 1989. Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sci. U. S. A. 86, 5969–5973.CrossRefGoogle Scholar
  9. 9.
    Lin Y.S., Kieser H.M., Hopwood D.A., Chen C.W. 1993. The chromosomal DNA of Streptomyces lividans 66 is linear. Mol. Microbiol. 10, 923–933.CrossRefGoogle Scholar
  10. 10.
    Goodner B.W., Markelz B.P., Flanagan M.C., Crowell C.B., Racette J.L., Schilling B.A., Halfon L.M., Mellors J.S., Grabowski G. 1999. Combined genetic and physical map of the complex genome of Agrobacterium tumefaciens. J. Bacteriol. 181, 5160–5166.Google Scholar
  11. 11.
    Nosek J., Tomaska L., Fukuhara H., Suyama Y., Kovac L. 1998. Linear mitochondrial genomes: 30 years down the line. Trends Genet. 14, 184–188.CrossRefGoogle Scholar
  12. 12.
    Hinnebush J., Tilly K. 1993. Linear plasmids and chromosomes in bacteria. Mol. Microbiol. 10, 917–922.CrossRefGoogle Scholar
  13. 13.
    McLeod M.P., Warren R.L., Hsiao W.W., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A.L., Wang D., Dosanjh M., Hara H., Petrescu A., Morin R.D., Yang G., et al. 2006. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. U. S. A. 103 (42), 15582–15587.CrossRefGoogle Scholar
  14. 14.
    Seshadri R., Paulsen I.T., Eisen J.A., Read T.D., Nelson K.E., Nelson W.C., Ward N.L., Tettelin H., Davidsen T.M., Beanan M.J., Deboy R.T., Daugherty S.C., Brinkac L.M., Madupu R., Dodson R.J., et al. 2003. Complete genome sequence of the Q-fever pathogen Coxiellaburnetii. Proc. Natl. Acad. Sci. U. S. A. 100 (9), 5455–5460.CrossRefGoogle Scholar
  15. 15.
    Shiman D., Cohen S.N. 1992. Reconstruction of a Streptomyces linear replicon from separately cloned DNA fragments: Existence of a cryptic origin of circular replication within the linear plasmid. Proc. Natl. Acad. Sci. U. S. A. 89, 6129–6133.CrossRefGoogle Scholar
  16. 16.
    Cui T., Morooka N., Ohsumi K., Kodama K., Ohshima T., Ogasawara N., Mori H., Wanner B., Niki H., Horiuchi T. 2007. Escherichia coli with a linear genome. EMBO Rep. 8 (2), 181–187.CrossRefGoogle Scholar
  17. 17.
    Sinha A.K., Possoz C., Durand A., Desfontaines J.M., Barre F.X., Leach D. R.F., Michel B. 2018. Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome. PLoS Genet. 14 (3), e1007256.CrossRefGoogle Scholar
  18. 18.
    Tsai H.,Shu H., Yang C., Chen C.W. 2012. Translesion-synthesis DNA polymerases participate in replication of the telomeres in Streptomyces. Nucleic Acids Res. 40 (3), 1118–1130.CrossRefGoogle Scholar
  19. 19.
    Bao K., Cohen S.N. 2003. Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. Genes Dev. 17 (6), 774–785.CrossRefGoogle Scholar
  20. 20.
    Chaconas G., Stewart P.E., Tilly K., Bono J.L., Rosa P. 2001. Telomere resolution in the Lyme disease spirochete. EMBO J. 20 (12), 3229–3237.CrossRefGoogle Scholar
  21. 21.
    Volff J.N., Altenbuchner J. 1998. Genetic instability of the Streptomyces chromosome. Mol. Microbiol. 27, 239–246.CrossRefGoogle Scholar
  22. 22.
    Casjens S., Palmer N., Van Vugt R., Mun Huang W., Stevenson B., Rosa P., Lathigra R., Sutton G., Peterson J., Dodson R.J., Haft D., Hickey E., Gwinn M., White O., Fraser C.M. 2000. A bacterial genome in flux: The twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35, 490–516.CrossRefGoogle Scholar
  23. 23.
    Cheng K., Rong X., Pinto-Tomás A.A., Fernández-Villalobos M., Murillo-Cruz C., Huang Y. 2015. Population genetic analysis of Streptomyces albidoflavus reveals habitat barriers to homologous recombination in the diversification of streptomycetes. Appl. Environ. Microbiol. 81 (3), 966–975.CrossRefGoogle Scholar
  24. 24.
    Marri P.R., Harris L.K., Houmiel K., Slater S.C., Ochman H. 2008. The effect of chromosome geometry on genetic diversity. Genetics. 179 (1), 511–516.CrossRefGoogle Scholar
  25. 25.
    Nass S., Nass M.M.K. 1963. Intramitochondrial fibers with DNA characteristics. J. Cell Biol. 19, 593–629.CrossRefGoogle Scholar
  26. 26.
    Suyama Y., Miura K. 1968. Size and structural variation of mitochondrial DNA. Proc. Natl. Acad. Sci. U. S. A. 60, 235–242.CrossRefGoogle Scholar
  27. 27.
    Schardl C.L., Lonsdale D.M., Pring D.R., Rose K.R. 1984. Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature. 310, 292–296.CrossRefGoogle Scholar
  28. 28.
    Kayal E., Bentlage B., Collins A.G., Kayal M., Pirro S., Lavrov D.V. 2012. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol. Evol. 4 (1), 1–12.CrossRefGoogle Scholar
  29. 29.
    Gerhold J.M., Sedman T., Visacka K., Slezakova J., Tomaska L., Nosek J., Sedman J. 2014. Replication intermediates of the linear mitochondrial DNA of Candida parapsilosis suggest a common recombination-based mechanism for yeast mitochondria. J. Biol. Chem. 289 (33), 22659–22670.CrossRefGoogle Scholar
  30. 30.
    Goddard J.M., Cummings D.J. 1975. Structure and replication of mitochondrial DNA from Paramecium aurelia. J. Mol. Biol. 97, 593–609.CrossRefGoogle Scholar
  31. 31.
    Maleszka R., Skelly P.J., Clark-Walker G.D. 1991. Rolling circle replication of DNA in yeast mitochondria. EMBO J. 10, 3923–3929.CrossRefGoogle Scholar
  32. 32.
    Nakamura T.M., Cooper J.P., CechT.R. 1998. Two modes of survival of fission yeast without telomerase. Science. 282, 493–496.CrossRefGoogle Scholar
  33. 33.
    Sakhabutdinova A.R., Maksimova M.A., Garafutdinov R.R. 2017. Synthesis of circular DNA templates with T4 RNA ligase for rolling circle amplification. Mol. Biol. (Moscow). 51 (4), 639–646.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscowRussia
  2. 2.Department of Bioengineering and Bioinformatics, Moscow State UniversityMoscowRussia
  3. 3.Skolkovo Institute for Science and TechnologyMoscowRussia

Personalised recommendations