Molecular Biology

, Volume 53, Issue 2, pp 291–298 | Cite as

Epithelial to Mesenchymal Transition Marker in 2D and 3D Colon Cancer Cell Cultures in the Presence of Laminin 332 and 411

  • D. V. MaltsevaEmail author
  • J. A. Makarova
  • A. Yu. Khristichenko
  • I. M. Tsypina
  • E. A. Tonevitsky
  • S. A. Rodin

The loss of apical-basal cell polarity is a necessary stage of the epithelial-mesenchymal transition (EMT). Polarized epithelial cells interact with the basement membrane (BM) and, in particular, with laminins, the major components of BM. Here, we examined the effect of the transition of colon cancer cells from 2D polarized state to non-polarized 3D state on the expression of EMT associated genes, as well as the role of laminins 332 and 411 (LM-332 and LM-411) in this process. The three studied cell lines, HT-29, HCT-116 and RKO, were found to have different sensitivity to cultivation conditions (2D to 3D changes) and to addition of laminins. One of the possible reasons for this may be a difference in the initial 2D state of the cells. In particular, it was shown that the cell lines were at different EMT stages. HT-29 exhibited more epithelial expression profile, RKO was more mesenchymal, and HCT-116 was in an intermediate state. The most laminin-sensitive cell line was HCT-116. The magnitude and the specificity of cell response to LM-332 and LM-411 depended on the expression pattern of laminins’ receptors. EMT gene expression profile was not substantially changed neither during the transition from 2D to 3D state, nor the presence of laminins’ isoforms. However, we detected changes in expression of SNAI1 and ZEB1 genes encoding transcription factors that control the EMT process. Notably, in all three studied cell lines, the expression of SNAI1 was enhanced in response to laminin treatment.


laminin-332 laminin-5 laminin-411 laminin-8 basal membrane colon cancer HT-29 HCT-116 RKO epithelial-mesenchymal transition apical-basal cell polarity in vitro model 2D culture 3D culture 



  1. 1.
    Samatov T.R., Tonevitsky A.G., Schumacher U. 2013. Epithelial–mesenchymal transition: Focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol. Cancer. 12, 107.CrossRefGoogle Scholar
  2. 2.
    Lamouille S., Xu J., Derynck R. 2014. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196.CrossRefGoogle Scholar
  3. 3.
    Domogatskaya A., Rodin S., Tryggvason K. 2012. Functional diversity of laminins. Annu. Rev. Cell Dev. Biol. 28, 523–553.CrossRefGoogle Scholar
  4. 4.
    Matlin K.S., Myllymäki S.-M., Manninen A. 2017. Laminins in epithelial cell polarization: Old questions in search of new answers. Cold Spring Harb. Perspect. Biol., a027920.Google Scholar
  5. 5.
    Marinkovich M.P. 2007. Tumour microenvironment: Laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer. 7, 370–380.CrossRefGoogle Scholar
  6. 6.
    Yurchenco P.D. 2011. Basement membranes: Cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3, a004911–a004911.CrossRefGoogle Scholar
  7. 7.
    Pastushenko I., Brisebarre A., Sifrim A., Fioramonti M., Revenco T., Boumahdi S., Van Keymeulen A., Brown D., Moers V., Lemaire S., De Clercq S., Minguijón E., Balsat C., Sokolow Y., Dubois C., et al. 2018. Identification of the tumour transition states occurring during EMT. Nature. 556, 463–468.CrossRefGoogle Scholar
  8. 8.
    Maltseva D.V., Rodin S.A. 2018. Laminins in metastatic cancer. Mol. Biol. (Moscow). 52 (3), 350–371.CrossRefGoogle Scholar
  9. 9.
    Doi M., Thyboll J., Kortesmaa J., Jansson K., Iivanainen A., Parvardeh M., Timpl R., Hedin U., Swedenborg J., Tryggvason K. 2002. Recombinant human laminin-10 (alpha5beta1gamma1): Production, purification, and migration-promoting activity on vascular endothelial cells. J. Biol. Chem. 277, 12741–12748.CrossRefGoogle Scholar
  10. 10.
    Khaustova N.A., Maltseva D.V., Oliveira-Ferrer L., Stürken C., Milde-Langosch K., Makarova J.A., Rodin S., Schumacher U., Tonevitsky A.G. 2017. Selectin-independent adhesion during ovarian cancer metastasis. Biochimie. 142, 197–206.CrossRefGoogle Scholar
  11. 11.
    Maltseva D.V., Krainova N.A., Khaustova N.A., Nikulin S. V., Tonevitskaya S.A., Poloznikov A.A. 2017. Biodistribution of viscumin after subcutaneous injection to mice and in vitro modeling of endoplasmic reticulum stress. Bull. Exp. Biol. Med. 163, 451–455.CrossRefGoogle Scholar
  12. 12.
    Krainova N.A., Khaustova N.A., Makeeva D.S., Fedotov N.N., Gudim E.A., Ryabenko E.A., Shkurnikov M.U., Galatenko V.V., Sakharov D.A., Maltseva D.V. 2013. Evaluation of potential reference genes for qRT-PCR data normalization in HeLa cells. Appl. Biochem. Microbiol. 49, 743–749.CrossRefGoogle Scholar
  13. 13.
    Maltseva D.V., Khaustova N.A., Fedotov N.N., Matveeva E.O., Lebedev A.E., Shkurnikov M.U., Galatenko V.V., Schumacher U., Tonevitsky A.G. 2013. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J. Clin. Bioinform. 3, 13.CrossRefGoogle Scholar
  14. 14.
    Nieto M.A., Huang R.Y.-J., Jackson R.A., Thiery J.P. 2016. EMT: 2016. Cell. 166, 21–45.CrossRefGoogle Scholar
  15. 15.
    Nikulin S.V, Raigorodskaya M.P., Poloznikov A.A., Zakharova G.S., Schumacher U., Wicklein D., Stürken C., Riecken K., Fomicheva K.A., Alekseev B.Y., Shkurnikov M.Y. 2018. Role of IGFBP6 protein in the regulation of epithelial-mesenchymal transition genes. Bull. Exp. Biol. Med. 164, 650–654.CrossRefGoogle Scholar
  16. 16.
    Kudriaeva A., Galatenko V., Maltseva D., Khaustova N., Kuzina E., Tonevitsky A., Gabibov A., Belogurov A. 2017. The transcriptome of type I murine astrocytes under interferon-gamma exposure and remyelination stimulus. Molecules. 22, 808.CrossRefGoogle Scholar
  17. 17.
    Barretina J., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehár J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., et al. 2012. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483, 603–607.CrossRefGoogle Scholar
  18. 18.
    Ramovs V., Te Molder L., Sonnenberg A. 2017. The opposing roles of laminin-binding integrins in cancer. Matrix Biol. 57–58, 213–243.CrossRefGoogle Scholar
  19. 19.
    Thomson S., Petti F., Sujka-Kwok I., Mercado P., Bean J., Monaghan M., Seymour S.L., Argast G.M., Epstein D.M., Haley J.D. 2011. A systems view of epithelial–mesenchymal transition signaling states. Clin. Exp. Metastasis. 28, 137–155.CrossRefGoogle Scholar
  20. 20.
    Qin Y., Rodin S., Simonson O.E., Hollande F. 2017. Laminins and cancer stem cells: Partners in crime? Semin. Cancer Biol. 45, 3–12.CrossRefGoogle Scholar
  21. 21.
    Galatenko V.V., Maltseva D.V., Galatenko A.V., Rodin S., Tonevitsky A.G. 2018. Cumulative prognostic power of laminin genes in colorectal cancer. BMC Med. Genomics. 11, 9.CrossRefGoogle Scholar
  22. 22.
    Rodin S.A., Maltseva D.V. 2017. Laminins in colorectal cancer: Expression, function, prognostic power and molecular mechanisms. Res. Pract. Med. J. 4, 73–78.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. V. Maltseva
    • 1
    • 2
    Email author
  • J. A. Makarova
    • 2
    • 3
  • A. Yu. Khristichenko
    • 1
  • I. M. Tsypina
    • 1
    • 4
  • E. A. Tonevitsky
    • 1
  • S. A. Rodin
    • 1
    • 5
  1. 1.SRC BioclinicumMoscowRussia
  2. 2.Hertsen Moscow Oncology Research Center, Branch of Federal State Budgetary Institution National Medical Research Radiological Center of the Ministry of Healthcare of the Russian FederationObninskRussia
  3. 3.Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  4. 4.National Research University Higher School of EconomicsMoscowRussia
  5. 5.Department of Medical Biochemistry and Biophysics, Karolinska InstituteStockholmSweden

Personalised recommendations