Advertisement

Molecular Biology

, Volume 53, Issue 2, pp 299–307 | Cite as

Epigenetic Mechanisms of Peptide-Driven Regulation and Neuroprotective Protein FKBP1b

  • B. I. Kuznik
  • S. O. Davydov
  • E. S. Popravka
  • N. S. Lin’kovaEmail author
  • L. S. Kozina
  • V. Kh. Khavinson
STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES

Abstract

Cortexin is a clinically approved cerebral cortex polypeptide complex in calves. The mechanism of cortexin action is not understood well. Two cortexin derivatives, short peptides EDR and DS with neuroprotective activity, were synthesized. According to the data of molecular modeling, these peptides are able to bind to the histone H1.3 protein. This can affect the conformation of histone H1.3, which leads to a change in the chromatin structure in the loci of some genes, in particular Fkbp1b encoding the FK506-binding protein. Electrophysiological processes associated with the Ca2+ exchange are disturbed in the pyramidal neurons of the hippocampus during aging of the brain. The Fkbp1b gene encodes peptidyl-prolyl cis-trans isomerase, regulating the release of calcium ions from the sarcoplasmic and endoplasmic reticulum of neurons. The activation of the Fkbp1b gene transcription under treatment with short peptides can promote the synthesis of its protein product and the activation of the Ca2+ release from organelles of the sarcoplasmic and endoplasmic reticulum of neurons, which, in turn, can lead to an increase in the functional activity of neurons.

Keywords:

short peptides neuroprotection aging molecular modeling FKBP1b 

Notes

REFERENCES

  1. 1.
    Anisimov V.N., Khavinson V.Kh. 2010. Peptide bioregulation of aging: Results and prospects. Biogerontology. 11 (2), 139‒149.CrossRefGoogle Scholar
  2. 2.
    Khavinson V.Kh. 2014. Peptides, genome, aging. Adv. Gerontol. 4 (4), 337–345.CrossRefGoogle Scholar
  3. 3.
    Khavinson V.Kh., Kunik B.I., Ryzhak G.A. 2012. Peptide bioregulators, a new class of geroprotectors: 1. Results of experimental studies. Usp. Gerontol. 25 (4), 696‒708.Google Scholar
  4. 4.
    Khavinson V.Kh., Korkushko O.V., Shatilo B.V., Antonyuk-Shcheglova I.A. 2011. A peptide geroprotector from the epiphysis retards accelerated aging in elderly persons. Byull. Eksp. Biol. Med. 151 (3), 366‒369.CrossRefGoogle Scholar
  5. 5.
    Khavinson V.Kh., Grigoriev E.I., Malinin V.V., Ryzhak G.A. 2008. Eurasian Patent EA 010157.Google Scholar
  6. 6.
    Morozov V.G., Ryzhak G.A., Malinin V.V., Rutkovskaya V.N. 2011. Tsitogeny. Biologicheski aktivnye dobavki k pishche: Metod. rekomendatsii (Cytogens: Biologically Active Dietary Supplements. Methodological Guidelines). St. Petersburg: Kosta.Google Scholar
  7. 7.
    Balashova S.N., Zhernakov G.L., Dudkov A.V. 2008. Applications of peptide bioregulators in elderly persons with psychoemotional disturbances. Usp. Gerontol. 3 (21), 448–452.Google Scholar
  8. 8.
    Arutjunyan A., Kozina L., Stvolinskiy S. 2012. Pinealon protects the rat offspring from prenatal hyperhomocysteinemia. Int. J. Clin. Exper. Med. 2 (5), 179–185.Google Scholar
  9. 9.
    Khavinson V., Ribakova Y., Kulebiakin K. 2011. Pinealon increases cell viability by suppression of free radical levels and activating proliferative processes. Rejuvenation Res. 5, 535–541.CrossRefGoogle Scholar
  10. 10.
    Umnov R.S., Lin’kova N.S., Khavinson V.Kh. 2013. Neuroprotective effects of peptide bioregulators in persons of different ages: A review. Usp. Gerontol. 4 (26), 671‒678.Google Scholar
  11. 11.
    Khavinson V., Linkova N., Kukanova E., Bolshakova A., Gainullina A., Tendler S., Morozova E., Tarnovskaya S., Vinski D.S.P., Bakulev V., Kasyanenko N. 2017. Neuroprotective effect of EDR peptide in mouse model of Huntington’s disease. J. Neurol. Neurosci. 1(8), 1‒11.Google Scholar
  12. 12.
    Krasovskaya N.A., Kukanova E.O., Lin’kova N.S., Popugaeva E.A., Khavinson V.Kh. 2017. Tripeptides restore the numbers of neuronal spines in an in vitro model of Alzheimer’s disease. Klet. Technol. Biol. Med. 2, 101‒104.Google Scholar
  13. 13.
    Fedoreyeva L.I., Smirnova T.A., Kolomiitseva G.Ya., Khavinson V.Kh., Vanyushin B.F. 2013. Interaction of short peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides. Biochemistry (Moscow). 78 (2), 166‒175.Google Scholar
  14. 14.
    Labute P. 2010. LowModeMD: Implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J. Chem. Inf. Model. 50, 792‒800.CrossRefGoogle Scholar
  15. 15.
    Case D.A., Darden T.A., Cheatham T.E. 2012. AMBER 12. San Francisco: Univ. of California Press.Google Scholar
  16. 16.
    Edelsbrunner H., Facello M., Fu R., Liang J. 1995. Measuring proteins and voids in proteins. In: Proc. 28th Hawaii Int. Conf. on Systems Science, pp. 256–264.Google Scholar
  17. 17.
    Soga S., Shirai H., Kobori M., Hirayama N. 2007. Use of amino acid composition to predict ligand-binding sites. J. Chem. Inf. Model. 47, 400‒406.CrossRefGoogle Scholar
  18. 18.
    Khachaturian Z.S. 1989. The role of calcium regulation in brain aging: Reexamination of a hypothesis. Aging (Milan). 1, 17–34.Google Scholar
  19. 19.
    Disterhoft J.F., Thompson L.T., Moyer J.R., Mogul D.J. 1996. Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sci. 59, 413–420.CrossRefGoogle Scholar
  20. 20.
    Landfield P.W., Pitler T.A. 1984. Prolonged Ca2+-dependent after hyperpolarization in hippocampal neurons of aged rats. Science. 226, 1089–1092.CrossRefGoogle Scholar
  21. 21.
    Moyer J.R., Thompson L.T., Black J.P., Disterhoft J.F. 1992. Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner. J. Neurophysiol. 68, 2100–2109.CrossRefGoogle Scholar
  22. 22.
    Gant J.C., Sama M.M., Landfield P.W., Thibault O. 2006. Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+-induced Ca2+ release. J. Neurosci. 26, 3482–3490.CrossRefGoogle Scholar
  23. 23.
    Lancaster B., Hu H., Ramakers G.M., Storm J.F. 2001. Interaction between synaptic excitation and slow afterhyperpolarization current in rat hippocampal pyramidal cells. J. Physiol. 536, 809–823.CrossRefGoogle Scholar
  24. 24.
    Andrade R., Foehring R.C., Tzingounis A.V. 2012. The calcium-activated slow AHP: Cutting through the Gordian knot. Front. Cell Neurosci. 6, 47.CrossRefGoogle Scholar
  25. 25.
    Voglis G., Tavernarakis N. 2006. The role of synaptic ion channels in synaptic plasticity. EMBO Rep. 7, 1104‒1110CrossRefGoogle Scholar
  26. 26.
    Tombaugh G.C., Rowe W.B., Rose G.M. 2005. The slow afterhyperpolarization in hippocampal CA1 neurons covaries with spatial learning ability in aged Fisher 344 rats. J. Neurosci. 25, 2609–2616.CrossRefGoogle Scholar
  27. 27.
    Luebke J.I., Amatrudo J.M. 2012. Age-related increase of sI(AHP) in prefrontal pyramidal cells of monkeys: Relationship to cognition. Neurobiol. Aging. 33, 1085–1095.CrossRefGoogle Scholar
  28. 28.
    Zalk R., Lehnart S.E., Marks A.R. 2007. Modulation of the ryanodine receptor and intracellular calcium. Annu. Rev. Biochem. 76, 367–385.CrossRefGoogle Scholar
  29. 29.
    Gant J.C., Chen K.C., Norris C.M., Kadish I., Thibault O., Blalock E.M., Porter N.M., Landfield P.W. 2011. Disrupting function of FK506-binding protein 1b/12.6 induces the Ca2+-dysregulation aging phenotype in hippocampal neurons. J. Neurosci. 5, 1693‒1703.CrossRefGoogle Scholar
  30. 30.
    Gant J.C., Blalock E.M., Chen K.C., Kadish I., Porter N.M., Norris C.M., Thibault O., Landfield P.W. 2014. FK506-binding protein 1b/12.6: A key to aging-related hippocampal Ca2+ dysregulation? Eur. J. Pharmacol. 739, 74‒82.CrossRefGoogle Scholar
  31. 31.
    Anwer H., Vinit K., Rohini P., Hirokuni A., Qi C. 2013. Sirolimus-FKBP12.6 impairs endothelial barrier function through protein kinase C-α activation and disruption of the p120-vascular endothelial cadherin interaction. Arteriosclerosis, Thromb. Vasc. Biol. 10, 2425‒2431.Google Scholar
  32. 32.
    Prevel N., Allenbach Y., Klatzmann D., Salomon B., Benveniste O. 2013. Beneficial role of rapamycin in experimental autoimmune myositis. PLoS One. 8 (11), e74450.CrossRefGoogle Scholar
  33. 33.
    Oshiro N., Yoshino K., Hidayat S., Tokunaga C., Hara K. 2004. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells. 4, 359‒366.CrossRefGoogle Scholar
  34. 34.
    Gant J.C., Chen K.C., Kadish I., Blalock E.M., Thibault O., Porter N.M., Landfield P.W. 2015. Reversal of aging-related neuronal Ca2+ dysregulation and cognitive impairment by delivery of a transgene encoding FK506-binding protein 12.6/1b to the hippocampus. J. Neurosci. 35, 30.CrossRefGoogle Scholar
  35. 35.
    Gant J.C., Blalock E.M., Chen K.C., Kadish I., Thibault O., Porter N.M., Landfield P.W. 2017. FK506-binding protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the hippocampus of aging rats. J. Neurosci. 38 (4), 1030–1041.CrossRefGoogle Scholar
  36. 36.
    Fedoreyeva L.I., Kireev I.I., Khavinson V.Kh., Vanyushin B.F. 2011. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry (Moscow). 76 (11), 1210–1219.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • B. I. Kuznik
    • 1
    • 2
  • S. O. Davydov
    • 1
    • 2
  • E. S. Popravka
    • 3
  • N. S. Lin’kova
    • 3
    • 4
    Email author
  • L. S. Kozina
    • 3
  • V. Kh. Khavinson
    • 3
    • 5
  1. 1.Chita State Medical AcademyChitaRussia
  2. 2.Health Academy Innovation ClinicChitaRussia
  3. 3.St. Petersburg Institute of Bioregulation and GerontologySt. PetersburgRussia
  4. 4.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  5. 5.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations