Advertisement

Molecular Biology

, Volume 53, Issue 2, pp 237–241 | Cite as

Homeotic DUX4 Genes that Control Human Embryonic Development at the Two-Cell Stage Are Surrounded by Regions Contacting with rDNA Gene Clusters

  • O. V. Kretova
  • D. M. Fedoseeva
  • Y. V. Kravatsky
  • I. R. Alembekov
  • I. Y. Slovohotov
  • N. A. TchurikovEmail author
GENOMICS. TRANSCRIPTOMICS
  • 7 Downloads

Abstract

Many human genes that control human embryonic development and differentiation of human cells form chromosomal contact with rRNA gene clusters, which are involved in the epigenetic regulation of many genes. The sites of rRNA gene contact often fall on extended (up to 50 kb) regions containing a chromatin mark, H3K27ac histone, typical for superenhancers, as well as on pericentromeric and subtelomeric regions of chromosomes. We found that the DUX4 genes located in the subtelomeric region of human chromosome 4 are surrounded by regions that are often in contact with the rRNA genes. The 25 kb region of this chromosome, presented in version hg19 of the sequenced human genome, contains several copies of the DUX4 gene. The sites of rRNA gene contacts located around this region contain methylation sites as well as CTCF binding sites. It is assumed that the rRNA gene contacts are important in silencing these DUX4 gene copies.

Keywords:

DUX4C interchromosomal contacts rDNA genes epigenetics H3K27ac marks deep sequencing 

Notes

REFERENCES

  1. 1.
    Tchurikov N.A., Fedoseeva D.M., Sosin D.V., Snezhkina A.V., Melnikova N.V., Kudryavtseva A.V., Kravatsky Y.V., Kretova O.V. 2015. Hot spots of DNA double-strand breaks and genomic contacts of human rDNA units are involved in epigenetic regulation. J. Mol. Cell. Biol. 7, 366‒382.  https://doi.org/10.1093/jmcb/mju038 CrossRefGoogle Scholar
  2. 2.
    Hnisz D., Abraham B.J., Lee T.I., Lau A., Saint-André V., Sigova A.A., Hoke H.A., Young R.A. 2013. Super-enhancers in the control of cell identity and disease. Cell. 155, 934–947.CrossRefGoogle Scholar
  3. 3.
    Feinberg A.P. 2014. The nucleolus gets the silent treatment. Cell Stem Cell. 15, 675–676.  https://doi.org/10.1016/j.stem.2014.11.017 CrossRefGoogle Scholar
  4. 4.
    Savić N., Bär D., Leone S., Frommel S.C., Weber F.A., Vollenweider E., Ferrari E., Ziegler U., Kaech A., Shakhova O., Cinelli P., Santoro R. 2014. lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell. 15, 720‒734.  https://doi.org/10.1016/j.stem.2014.10.005 CrossRefGoogle Scholar
  5. 5.
    De Iaco A., Planet E., Coluccio A., Verp S., Duc J., Trono D. 2017. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat. Genet. 49, 941‒945.  https://doi.org/10.1038/ng.3858 CrossRefGoogle Scholar
  6. 6.
    van der Maarel S.M., Tawil R., Tapscott S.J. 2011. Facioscapulohumeral muscular dystrophy and DUX4: Breaking the silence. Trends Mol Med. 17, 252–258.  https://doi.org/10.1016/j.molmed.2011.01.001 CrossRefGoogle Scholar
  7. 7.
    Percharde M., Lin C.J., Yin Y., Guan J., Peixoto G.A., Bulut-Karslioglu A., Biechele S., Huang B., Shen X., Ramalho-Santos M. 2018. A LINE1-nucleolin partnership regulates early development and ESC identity. Cell. 174 (2), 391–405.  https://doi.org/10.1016/j.cell.2018.05.043 CrossRefGoogle Scholar
  8. 8.
    Andrews S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.Google Scholar
  9. 9.
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12.Google Scholar
  10. 10.
    Vizoso M., Esteller M. 2012. The activatory long non-coding RNA DBE-T reveals the epigenetic etiology of facioscapulohumeral muscular dystrophy. Cell Res. 22, 1413‒1415.  https://doi.org/10.1038/cr.2012.93 CrossRefGoogle Scholar
  11. 11.
    Whiddon J.L., Langford A.T., Wong C.J., Zhong J.W., Tapscott S.J. 2017. Conservation and innovation in the DUX4-family gene network. Nat. Genet. 49, 935‒940.  https://doi.org/10.1038/ng.3846 CrossRefGoogle Scholar
  12. 12.
    Lim J.W., Wong C.J., Yao Z., Tawil R., van der Maarel S.M., Miller D.G., Tapscott S.J., Filippova G.N. 2018. Small noncoding RNAs in FSHD2 muscle cells reveal both DUX4- and SMCHD1-specific signatures. Hum. Mol. Genet. 15, 2644–2657.  https://doi.org/10.1093/hmg/ddy173 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • O. V. Kretova
    • 1
  • D. M. Fedoseeva
    • 1
  • Y. V. Kravatsky
    • 1
  • I. R. Alembekov
    • 1
  • I. Y. Slovohotov
    • 1
  • N. A. Tchurikov
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations