Advertisement

Molecular Biology

, Volume 53, Issue 2, pp 249–255 | Cite as

Variability of the MIR196A2 Gene as a Risk Factor in Primary-Progressive Multiple Sclerosis Development

  • I. S. KiselevEmail author
  • O. G. Kulakova
  • N. M. Baulina
  • V. V. Bashinskaya
  • E. V. Popova
  • A. N. Boyko
  • O. O. Favorova
GENOMICS. TRANSCRIPTOMICS
  • 1 Downloads

Abstract

Multiple sclerosis is a chronic disease of the central nervous system, combining in its pathogenesis both autoimmune and neurodegenerative components, and is characterized by a highly heterogeneous clinical phenotype. Genetic susceptibility to the development of the most common relapsing-remitting course of the disease is extensively studied, while the genetic architecture of the aggressive primary progressive course of multiple sclerosis remains poorly understood. We analyzed the association of polymorphic variants in miRNA genes MIR146A, MIR196A2, and MIR499A with the risk of primary progressive multiple sclerosis one by one and in biallelic combinations with variants of immune-related genes; the analysis was performed in comparison with healthy individuals and with relapsing-remitting multiple sclerosis patients. The allele MIR196A2*C was useful in discriminating between two main courses of multiple sclerosis, one by one and in combination with alleles of the IFNAR2, IL7RA, IL6, PVT1, CD86, CCL5, and PSMB9 genes. The data presented in the current work may be used for the construction of a biomarker panel, to differentiate primary progressive and relapsing-remitting courses of multiple sclerosis on the initial stages of the disease.

Keywords:

primary progressive multiple sclerosis relapsing-remitting multiple sclerosis single nucleotide polymorphism association miRNA genes biallelic combinations 

Notes

REFERENCES

  1. 1.
    Didonna A., Oksenberg J.R. 2017. The genetics of multiple sclerosis. In: Multiple Sclerosis: Perspectives in Treatment and Pathogenesis. Eds. Zagon I.S., McLaughlin P.J. Brisbane: Codon Publ., pp. 3–16.Google Scholar
  2. 2.
    Podbielska M., O’Keeffe J., Hogan E.L. 2018. Autoimmunity in multiple sclerosis: Role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J. Neurol. Sci. 385, 198–214.CrossRefGoogle Scholar
  3. 3.
    Koch M., Kingwell E., Rieckmann P., Tremlett H. 2009. The natural history of primary progressive multiple sclerosis. Neurology. 73, 1996–2002.CrossRefGoogle Scholar
  4. 4.
    Correale J. 2014. The role of microglial activation in disease progression. Mult. Scler. 20, 1288–1295.CrossRefGoogle Scholar
  5. 5.
    Thompson A.J. 2017. Challenge of progressive multiple sclerosis therapy. Curr. Opin. Neurol. 30, 237–240.CrossRefGoogle Scholar
  6. 6.
    Oksenberg J.R. 2013. Decoding multiple sclerosis: An update on genomics and future directions. Expert Rev. Neurother. 13, 11–19.CrossRefGoogle Scholar
  7. 7.
    Baulia N.M., Kulakova O.G., Favorova O.O. 2016. MicroRMAs: The Role in autoimmune inflammation. Acta Naturae. 8, 23–36CrossRefGoogle Scholar
  8. 8.
    Mohr A.M., Mott J.L. 2015. Overview of microRNA biology. Semin. Liver. Dis. 35, 3–11.CrossRefGoogle Scholar
  9. 9.
    Diao L., Marcais A., Norton S., Chen K.C. 2014. MixMir: MicroRNA motif discovery from gene expression data using mixed linear models. Nucleic Acids. Res. 42, e135.CrossRefGoogle Scholar
  10. 10.
    Dolati S., Marofi F., Babaloo Z., Aghebati-Maleki L., Roshangar L., Ahmadi M., Rikhtegar R., Yousefi M. 2018. Dysregulated network of miRNAs involved in the pathogenesis of multiple sclerosis. Biomed. Pharmacother. 104, 280–290.CrossRefGoogle Scholar
  11. 11.
    Vistbakka J., Elovaara I., Lehtimaki T., Hagman S. 2017. Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult. Scler. 23, 403–412.CrossRefGoogle Scholar
  12. 12.
    Ebrahimkhani S., Vafaee F., Young P.E., Hur S.S.J., Hawke S., Devenney E., Beadnall H., Barnett M.H., Suter C.M., Buckland M.E. 2017. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci. Rep. 7, 14293.CrossRefGoogle Scholar
  13. 13.
    Mancuso R., Hernis A., Agostini S., Rovaris M., Caputo D., Clerici M. 2015. MicroRNA-572 expression in multiple sclerosis patients with different patterns of clinical progression. J. Transl. Med. 13, 148.CrossRefGoogle Scholar
  14. 14.
    Kiselev I., Bashinskaya V., Kulakova O., Baulina N., Popova E., Boyko A., Favorova O. 2015. Variants of microRNA genes: Gender-specific associations with multiple sclerosis risk and severity. Int. J. Mol. Sci. 16, 20067–20081.CrossRefGoogle Scholar
  15. 15.
    Li Y., Du C., Wang W., Ma G., Cui L., Zhou H., Tao H., Yao L., Zhao B., Li K. 2015. Genetic association of MiR-146a with multiple sclerosis susceptibility in the Chinese population. Cell. Physiol. Biochem. 35, 281–291.CrossRefGoogle Scholar
  16. 16.
    Lu L., Tu Y., Liu L., Qi J., He L. 2014. MicroRNA-499 rs3746444 polymorphism and autoimmune diseases risk: a meta-analysis. Mol. Diagn. Ther. 18, 237–242.CrossRefGoogle Scholar
  17. 17.
    Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., Lublin F.D., Montalban X., O’Connor P., Sandberg-Wollheim M., Thompson A.J., et al. 2011. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302.CrossRefGoogle Scholar
  18. 18.
    SNPStats: https://www.snpstats.net/start.htm.Google Scholar
  19. 19.
    Favorov A.V. 2005. APSampler: http://apsampler. sourceforge.net/.Google Scholar
  20. 20.
    Barsova R.M., Lvovs D., Titov B.V., Matveeva N.A., Shakhnovich R.M., Sukhinina T.S., Kukava N.G., Ruda M.Y., Karamova I.M., Nasibullin T.R., Musta-fina O.E., Osmak G.J., Tsareva E.Y., Kulakova O.G., Favorov A.V., Favorova O.O. 2015. Variants of the coagulation and inflammation genes are replicably associated with myocardial infarction and epistatically interact in Russians. PLoS One. 10, e0144190.CrossRefGoogle Scholar
  21. 21.
    Qiu R., Liu Y., Wu J.Y., Liu K., Mo W., He R. 2009. Misexpression of miR-196a induces eye anomaly in Xenopus laevis. Brain. Res. Bull. 79, 26–31.CrossRefGoogle Scholar
  22. 22.
    Kim Y.J., Bae S.W., Yu S.S., Bae Y.C., Jung J.S. 2009. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J. Bone Miner. Res. 24, 816–825.CrossRefGoogle Scholar
  23. 23.
    Her L.S., Mao S.H., Chang C.Y., Cheng P.H., Chang Y.F., Yang H.I., Chen C.M., Yang S.H. 2017. miR-196a enhances neuronal morphology through suppressing RANBP10 to provide neuroprotection in Huntington’s disease. Theranostics. 7, 2452–2462.CrossRefGoogle Scholar
  24. 24.
    Mori M., Nakagami H., Rodriguez-Araujo G., Nimura K., Kaneda Y. 2012. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 10, e1001314.CrossRefGoogle Scholar
  25. 25.
    Go H., La P., Namba F., Ito M., Yang G., Brydun A., Igarashi K., Dennery P.A. 2016. MiR-196a regulates heme oxygenase-1 by silencing Bach1 in the neonatal mouse lung. Am. J. Physiol. Lung. Cell. Mol. Physiol. 311, L400–L411.Google Scholar
  26. 26.
    Tripurani S.K., Lee K.B., Wee G., Smith G.W., Yao J. 2011. MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Dev. Biol. 11, 25.CrossRefGoogle Scholar
  27. 27.
    Fu M.H., Li C.L., Lin H.L., Tsai S.J., Lai Y.Y., Chang Y.F., Cheng P.H., Chen C.M., Yang S.H. 2015. The potential regulatory mechanisms of miR-196a in Huntington’s disease through bioinformatic analyses. PLoS One. 10, e0137637.CrossRefGoogle Scholar
  28. 28.
    Kunkanjanawan T., Carter R.L., Prucha M.S., Yang J., Parnpai R., Chan A.W. 2016. miR-196a ameliorates cytotoxicity and cellular phenotype in transgenic Huntington’s disease monkey neural cells. PLoS One. 11, e0162788.CrossRefGoogle Scholar
  29. 29.
    Cheng P.H., Li C.L., Chang Y.F., Tsai S.J., Lai Y.Y., Chan A.W., Chen C.M., Yang S.H. 2013. miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am. J. Hum. Genet. 93, 306–312.CrossRefGoogle Scholar
  30. 30.
    Yuan Y., Anbalagan D., Lee L.H., Samy R.P., Shanmugam M.K., Kumar A.P., Sethi G., Lobie P.E., Lim L.H. 2016. ANXA1 inhibits miRNA-196a in a negative feedback loop through NF-kB and c-Myc to reduce breast cancer proliferation. Oncotarget. 7, 27007–27020.Google Scholar
  31. 31.
    Yang G., Han D., Chen X., Zhang D., Wang L., Shi C., Zhang W., Li C., Chen X., Liu H., Zhang D., Kang J., Peng F., Liu Z., Qi J., et al. 2014. MiR-196a exerts its oncogenic effect in glioblastoma multiforme by inhibition of IκBα both in vitro and in vivo. Neuro. Oncol. 16, 652–661.CrossRefGoogle Scholar
  32. 32.
    Qi J., Hou S., Zhang Q., Liao D., Wei L., Fang J., Kijlstra A., Yang P. 2013. A functional variant of pre-miRNA-196a2 confers risk for Behcet’s disease but not for Vogt–Koyanagi–Harada syndrome or AAU in ankylosing spondylitis. Hum. Genet. 132, 1395–1404.CrossRefGoogle Scholar
  33. 33.
    Hu Z., Chen J., Tian T., Zhou X., Gu H., Xu L., Zeng Y., Miao R., Jin G., Ma H., Chen Y., Shen H. 2008. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J. Clin. Invest. 118, 2600–2608.CrossRefGoogle Scholar
  34. 34.
    Qi P., Wang L., Zhou B., Yao W.J., Xu S., Zhou Y., Xie Z.B. 2015. Associations of miRNA polymorphisms and expression levels with breast cancer risk in the Chinese population. Genet. Mol. Res. 14, 6289–6296.CrossRefGoogle Scholar
  35. 35.
    Sibin M.K., Harshitha S.M., Narasingarao K.V., Dhananjaya I.B., Dhaval P.S., Chetan G.K. 2017. Effect of rs11614913 polymorphism on mature miR196a2 expression and its target gene HOXC8 expression in human glioma. J. Mol. Neurosci. 61, 144–151.CrossRefGoogle Scholar
  36. 36.
    Ciccacci C., Politi C., Biancone L., Latini A., Novelli G., Calabrese E., Borgiani P. 2017. Polymorphisms in MIR122, MIR196A2, and MIR124A genes are associated with clinical phenotypes in inflammatory bowel diseases. Mol. Diagn. Ther. 21, 107–114.CrossRefGoogle Scholar
  37. 37.
    Okubo M., Tahara T., Shibata T., Yamashita H., Nakamura M., Yoshioka D., Yonemura J., Kamiya Y., Ishizuka T., Nakagawa Y., Nagasaka M., Iwata M., Yamada H., Hirata I., Arisawa T. 2011. Association study of common genetic variants in pre-microRNAs in patients with ulcerative colitis. J. Clin. Immunol. 31, 69–73.CrossRefGoogle Scholar
  38. 38.
    Trinh H.K.T., Pham D.L., Kim S.C., Kim R.Y., Park H.S., Kim S.H. 2017. Association of the miR-196a2, miR-146a, and miR-499 polymorphisms with asthma phenotypes in a Korean population. Mol. Diagn. Ther. 21, 547–554.CrossRefGoogle Scholar
  39. 39.
    Hussein M.H., Toraih E.A., Aly N.M., Riad E., Fawzy M.S. 2016. A passenger strand variant in miR-196a2 contributes to asthma severity in children and adolescents: A preliminary study. Biochem. Cell. Biol. 94, 347–357.CrossRefGoogle Scholar
  40. 40.
    Bashinskaya V.V., Kulakova O.G., Boyko A.N., Favorov A.V., Favorova O.O. 2015. A review of genome-wide association studies for multiple sclerosis: Classical and hypothesis-driven approaches. Hum. Genet. 134, 1143–1162.CrossRefGoogle Scholar
  41. 41.
    Ubogu E.E., Callahan M.K., Tucky B.H., Ransohoff R.M. 2006. Determinants of CCL5-driven mononuclear cell migration across the blood-brain barrier. Implications for therapeutically modulating neuroinflammation. J. Neuroimmunol. 179, 132–144.CrossRefGoogle Scholar
  42. 42.
    Makarycheva O.Yu., Tsareva E.Yu., Sudomoina M.A., Kulakova O.G., Titov B.V., Bykova O.V., Gol’tsova N.V., Kuzenkova L.M., Boiko A.N., Favorova O.O. 2011. Family analysis of linkage and association of HLA-DRB1, CTLA4, TGFB1, IL4, CCR5, RANTES, MMP9, and TIMP1 gene polymorphisms with multiple sclerosis. Acta Naturae. 3, 91–98.Google Scholar
  43. 43.
    van Veen T., Nielsen J., Berkhof J., Barkhof F., Kamphorst W., Bo L., Ravid R., Verweij C.L., Huitinga I., Polman C.H., Uitdehaag B.M. 2007. CCL5 and CCR5 genotypes modify clinical, radiological and pathological features of multiple sclerosis. J. Neuroimmunol. 190, 157–164.CrossRefGoogle Scholar
  44. 44.
    Liu Y., Li H.J., Qiu X.T., Guo H.W., Li Y.H., Zhang Q. 2007. Molecular characterization, expression and mapping of porcine LMP2 and MECL-1 genes. DNA Seq. 18, 257–264.CrossRefGoogle Scholar
  45. 45.
    Yu L., Li Q., Lin J., Yu J., Li Q., Yi W., Sun H., Chu J.Y., Yang Z.Q. 2013. Association between polymorphisms of PSMB8, PSMB9 and TAP2 genes with rheumatoid arthritis in ethnic Han Chinese from Yunnan. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 30, 222–226.Google Scholar
  46. 46.
    Mo M.S., Huang W., Sun C.C., Zhang L.M., Cen L., Xiao Y.S., Li G.F., Yang X.L., Qu S.G., Xu P.Y. 2016. Association analysis of proteasome subunits and transporter associated with antigen processing on Chinese patients with Parkinson’s disease. Chin. Med. J. 129, 1053–1058.CrossRefGoogle Scholar
  47. 47.
    Agarwal V., Bell G.W., Nam J.W. Bartel D.P. 2015. TargetScanHuman: http://www.targetscan.org.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • I. S. Kiselev
    • 1
    Email author
  • O. G. Kulakova
    • 1
  • N. M. Baulina
    • 1
  • V. V. Bashinskaya
    • 1
  • E. V. Popova
    • 1
  • A. N. Boyko
    • 1
  • O. O. Favorova
    • 1
  1. 1.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations