Molecular Biology

, Volume 53, Issue 2, pp 242–248 | Cite as

Candida glabrata Rpn4-like Protein Complements the RPN4 Deletion in Saccharomyces cerevisiae

  • D. S. KarpovEmail author
  • E. N. Grineva
  • S. V. Kiseleva
  • E. S. Chelarskaya
  • D. S. Spasskaya
  • V. L. Karpov


Expression of Saccharomyces cerevisiae proteasomal genes is regulated in a coordinated manner by a system that includes the ScRpn4 transcription factor and its binding site known as PACE. Earlier we showed that, Rpn4-like proteins from the biotechnologically important yeast species Komagataellapfaffii (Pichiapastoris), Yarrowia lipolytica, and Debaryomyces hansenii are capable of complementing the RPN4 deletion in S. cerevisiae in spite of their low structural similarity to ScRpn4. The opportunistic yeast pathogen Candida glabrata has a gene coding for a Rpn4-like protein, which has not been characterized experimentally yet. The C. glabrata ortholog ScRpn4 was expressed heterologously and found to restore the stress resistance and expression of proteasomal genes in a mutant S. cerevisiae strain with a RPN4 deletion. This complementation required the unique N-terminal region of CgRpn4. The results indicate that CgRpn4 acts as a transcriptional activator of proteasomal genes. The S. cerevisiae model can be used for further structural and functional analyses of CgRpn4.


Rpn4 Candida glabrata transcription regulation proteasomal genes stress resistance 



  1. 1.
    Gabaldon T., Carrete L. 2016. The birth of a deadly yeast: tracing the evolutionary emergence of virulence traits in Candida glabrata. FEMS Yeast Res. 16, fov110.CrossRefGoogle Scholar
  2. 2.
    Mannhaupt G., Feldmann H. 2007. Genomic evolution of the proteasome system among hemiascomycetous yeasts. J. Mol. Evol. 65, 529–540.CrossRefGoogle Scholar
  3. 3.
    Vermitsky J.-P., Earhart K.D., Smith W.L., Homayouni R., Edlind T.D., Rogers P.D. 2006. Pdr1 regulates multidrug resistance in Candida glabrata: Gene disruption and genome-wide expression studies. Mol. Microbiol. 61, 704–722.CrossRefGoogle Scholar
  4. 4.
    Owsianik G., Balzil L., Ghislain M. 2002. Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Mol. Microbiol. 43, 1295–1308.CrossRefGoogle Scholar
  5. 5.
    Kapranov A.B., Kuryatova MV., Preobrazhenskaya O.V., Tutyaeva V.V., Stucka R., Feldmann H., Karpov V.L. 2001. Isolation and identification of PACE-binding protein Rpn4, a new transcriptional activator regulating 26S-proteasomal and other genes. Mol. Biol. (Moscow). 35 (3), 356–364.CrossRefGoogle Scholar
  6. 6.
    Mannhaupt G., Schnall R., Karpov V., Vetter I., Feldmann H. 1999. Rpn4 acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 450, 27–34.CrossRefGoogle Scholar
  7. 7.
    Spasskaya D.S., Karpov D.S., Mironov A.S., Karpov V.L. 2014. Transcription factor Rpn4 promotes a complex antistress response in Saccharomyces cerevisiae cells exposed to methyl methanesulfonate. Mol. Biol. (Moscow). 48 (1), 141–149.CrossRefGoogle Scholar
  8. 8.
    Grineva E.N., Leinsoo A.T., Spsskaya D.S., Karpov D.S., Karpov V.L. 2014. Functional analysis of Rpn4-like proteins from Komagataella (Pichia) pastoris and Yarrowia lipolytica in a heterologous Saccharomyces cerevisiae system. Biotekhnologiya. 6, 8–17.Google Scholar
  9. 9.
    Karpov D.S., Grineva E.N., Leinsoo A.T., Nadolinskaia N.I., Danilenko N.K., Tutyaeva V.V., Spasskaya D.S., Preobrazhenskaya O.V., Lysov Y.P., Karpov V.L. 2017. Functional analysis of Debaryomyces hansenii Rpn4 on a genetic background of Saccharomyces cerevisiae. FEMS Yeast Res. 17, fow098.Google Scholar
  10. 10.
    Enjalbert B., Smith D.A., Cornell M.J., Alam I., Nicholls S., Brown A.J.P., Quinn J. 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell. 17, 1018‒1032.CrossRefGoogle Scholar
  11. 11.
    Gietz R.D., Woods R.A. 2002. Transformation of yeast by the LiAc/ss carrier DNA/PEG method. Methods Enzymol. 350, 87–96.CrossRefGoogle Scholar
  12. 12.
    Schwarzmuller T., Ma B., Hiller E., Istel F., Tscherner M., Brunke S., Ames L., Firon A., Green B., Cabral V., Marcet-Houben M., Jacobsen I.D., Quintin J., Seider K., Frohner I., et al. 2014. Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS Pathog. 10, e1004211.CrossRefGoogle Scholar
  13. 13.
    Amberg D.C., Burke D.J., Strathern J.N. 2006. Isolation of yeast genomic DNA for southern blot analysis. CSH Protoc. 2006.Google Scholar
  14. 14.
    Karpov D.S., Spasskaya D.S., Tutyaeva V.V., Mironov A.S., Karpov V.L. 2013. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes. FEBS Lett. 587, 3108–3114.CrossRefGoogle Scholar
  15. 15.
    Spasskaya D.S., Karpov D.S., Karpov V.L. 2011. Escherichia coli Dam-methylase as a molecular tool for mapping binding sites of the yeast transcription factor Rpn4. Mol. Biol. (Moscow). 45 (4), 591–599.CrossRefGoogle Scholar
  16. 16.
    Schmitt M.E., Brown T.A., Trumpower B.L. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092.CrossRefGoogle Scholar
  17. 17.
    Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.CrossRefGoogle Scholar
  18. 18.
    Ha S.W., Ju D., Xie Y. 2012. The N-terminal domain of Rpn4 serves as a portable ubiquitin-independent degron and is recognized by specific 19S RP subunits. Biochem. Biophys. Res. Commun. 419, 226–231.CrossRefGoogle Scholar
  19. 19.
    Karpov D.S., Tutyaeva V.V., Karpov V.L. 2008. Mapping of yeast Rpn4p transactivation domains. FEBS Lett. 582, 3459–3464.CrossRefGoogle Scholar
  20. 20.
    McWilliam H., Li W., Uludag M., Squizzato S., Park Y.M., Buso N., Cowley A.P., Lopez R. 2013. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 41, W597–W600.CrossRefGoogle Scholar
  21. 21.
    Persikov A., Singh M. 2014. De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. Nucleic Acids Res. 42, 97–108.CrossRefGoogle Scholar
  22. 22.
    Wolfe S.A., Nekludova L., Pabo C.O. 2000. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212.CrossRefGoogle Scholar
  23. 23.
    Dreier B., Segal D.J., Barbas C.F. 2000. Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains. J. Mol. Biol. 303, 489– 502.CrossRefGoogle Scholar
  24. 24.
    Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. 2004. WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190.CrossRefGoogle Scholar
  25. 25.
    Brennan R.J., Schiestl R.H. 1996. Cadmium is an inducer of oxidative stress in yeast. Mutat. Res. 356, 171–178.CrossRefGoogle Scholar
  26. 26.
    Haugen A.C., Kelley R., Collins J.B., Tucker C.J., Deng C., Afshari C.A., Brown J.M., Ideker T., Van Houten B. 2004. Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol. 5, R95.CrossRefGoogle Scholar
  27. 27.
    London M.K., Keck B.I., Ramos P.C., R. Dohmen R.J. 2004. Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Lett. 567, 259–264.CrossRefGoogle Scholar
  28. 28.
    Lee J., Godon C., Lagniel G., Spector D., Garin J., Labarre J., Toledano M.B. 1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040–16046.CrossRefGoogle Scholar
  29. 29.
    Mitchell P.J., Tjian R. 1989. Transcriptional regulation in mammalian cells by sequence specific DNA binding proteins. Science. 245, 371–378.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • D. S. Karpov
    • 1
    • 2
    Email author
  • E. N. Grineva
    • 1
  • S. V. Kiseleva
    • 1
  • E. S. Chelarskaya
    • 1
  • D. S. Spasskaya
    • 1
  • V. L. Karpov
    • 1
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Orekhovich Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations