Advertisement

Molecular Biology

, Volume 53, Issue 2, pp 308–311 | Cite as

Protein Biosynthesis Proofreading Is Closely Associated with the Existence of Factor-Free Ribosomal Synthesis

  • A. V. FinkelsteinEmail author
  • L. P. Gavrilova
STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • 5 Downloads

Abstract

Despite protein biosynthesis being studied for decades, some major questions concerning this process are still to be addressed. We elucidate a close connection between proofreading of the emerging amino acid sequence during its normal, elongation factor-dependent ribosomal biosynthesis and the existence of the factor-free synthesis of a polypeptide chain on a ribosome. In this factor-free process, the biological role of proofreading is played by a process opposite to the factor-free attachment of Aa-tRNA to the ribosome, namely, the removal via the same pathway of that Aa-tRNA, which is not complementary to the mRNA codon exhibited by the ribosome.

Keywords:

biosynthesis of polypeptides ribosome elongation factor Tu GTP factor-free process parallel reactions free energy codon recognition proofreading 

Notes

REFERENCES

  1. 1.
    Fersht A. 2017. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. New Jersey: World Scientific.Google Scholar
  2. 2.
    Spirin A.S. 1999. Ribosomes. New York: Kluwer.CrossRefGoogle Scholar
  3. 3.
    Moras D. 2010. Proofreading in translation: Dynamics of the double–sieve model. Proc. Natl. Acad. Sci. U. S. A. 107, 21949‒21950.CrossRefGoogle Scholar
  4. 4.
    Hussain T., Kamarthapu V., Kruparani S.P., Desh-mukh M.V., Sankaranarayanan R. 2010. Mechanistic insights into cognate substrate discrimination during proofreading in translation. Proc. Natl. Acad. Sci. U. S. A. 107, 22117‒22121.CrossRefGoogle Scholar
  5. 5.
    Hopfield J.J. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U. S. A. 71, 4135‒4139.CrossRefGoogle Scholar
  6. 6.
    Leong K.-W., Uzun Ü., Selmer M., Ehrenberg M. 2016. Two proofreading steps amplify the accuracy of genetic code translation. Proc. Natl. Acad. Sci. U. S. A. 113, 13744‒13749.CrossRefGoogle Scholar
  7. 7.
    Pestka S. 1968. Studies on the formation of transfer ribonucleic acid–ribosome complexes: 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. J. Biol. Chem. 243, 2810‒2820.Google Scholar
  8. 8.
    Pestka S. 1969. Studies on the formation of transfer ribonucleic acid–ribosome complexes: 4. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors. J. Biol. Chem. 244, 1533‒1539.Google Scholar
  9. 9.
    Gavrilova L.P., Smolyaninov V.V. 1971. Study of the mechanism of translocation in ribosomes: 1. Polyphenylalanine synthesis in Escherichia coli ribosomes without participation of guanosine-5'-triphosphate and protein translation factors. Mol. Biol. (Moscow). 5 (6), 710–717.Google Scholar
  10. 10.
    Gavrilova L.P., Spirin A.S. 1971. Stimulation of “non-enzymic” translocation in ribosomes by ρ-chloromercuribenzoate. FEBS Lett. 17, 324‒326.CrossRefGoogle Scholar
  11. 11.
    Lucas-Lenard J., Lipmann F. 1971. Protein biosynthesis. Annu. Rev. Biochem. 40, 409‒448.CrossRefGoogle Scholar
  12. 12.
    Gavrilova L.P., Spirin A.S. 1972. A modification of the 30S ribosomal subparticle is responsible for stimulation of “non-enzymatic” translocation by p-chloromercuribenzoate. FEBS Lett. 22, 91‒92.CrossRefGoogle Scholar
  13. 13.
    Gavrilova L.P., Rutkevitch N.M. 1980. Ribosomal synthesis of polyleucine on polyuridylic acid as a template: Contribution of the elongation factors. FEBS Lett. 120, 135‒140CrossRefGoogle Scholar
  14. 14.
    Gavrilova L.P., Perminova I.N., Spirin A.S. 1981. Elongation factor Tu can reduce translation errors in poly(U)-directed cell-free systems. J. Mol. Biol. 149, 69‒78.CrossRefGoogle Scholar
  15. 15.
    Noel J.K., Whitford P.C. 2016. How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome. Nat. Commun. 7, 13314.CrossRefGoogle Scholar
  16. 16.
    Gavrilova L.P., Kakhniashvili D.G., Smailov S.K. 1984. Stoichiometry of GTP hydrolysis in a poly(U)-dependent cell-free translation system. Determination of GTP/peptide bond ratios during codon-specific elongation and misreading. FEBS Lett. 178, 283‒287.CrossRefGoogle Scholar
  17. 17.
    Kakhniashvili D.G., Smailov S.K., Gavrilova L.P. 1986. The excess GTP hydrolyzed during mistranslation is expended at the stage of EF-Tu-promoted binding of non-cognate aminoacyl-tRNA. FEBS Lett. 196, 103‒107.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Protein Research, Pushchino, Russian Academy of SciencesPushchinoRussia
  2. 2.Faculty of Biology, Moscow State UniversityMoscowRussia

Personalised recommendations