Skip to main content
Log in

Protein Biosynthesis Proofreading Is Closely Associated with the Existence of Factor-Free Ribosomal Synthesis

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Despite protein biosynthesis being studied for decades, some major questions concerning this process are still to be addressed. We elucidate a close connection between proofreading of the emerging amino acid sequence during its normal, elongation factor-dependent ribosomal biosynthesis and the existence of the factor-free synthesis of a polypeptide chain on a ribosome. In this factor-free process, the biological role of proofreading is played by a process opposite to the factor-free attachment of Aa-tRNA to the ribosome, namely, the removal via the same pathway of that Aa-tRNA, which is not complementary to the mRNA codon exhibited by the ribosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Fersht A. 2017. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. New Jersey: World Scientific.

  2. Spirin A.S. 1999. Ribosomes. New York: Kluwer.

    Book  Google Scholar 

  3. Moras D. 2010. Proofreading in translation: Dynamics of the double–sieve model. Proc. Natl. Acad. Sci. U. S. A. 107, 21949‒21950.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hussain T., Kamarthapu V., Kruparani S.P., Desh-mukh M.V., Sankaranarayanan R. 2010. Mechanistic insights into cognate substrate discrimination during proofreading in translation. Proc. Natl. Acad. Sci. U. S. A. 107, 22117‒22121.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hopfield J.J. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. U. S. A. 71, 4135‒4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leong K.-W., Uzun Ü., Selmer M., Ehrenberg M. 2016. Two proofreading steps amplify the accuracy of genetic code translation. Proc. Natl. Acad. Sci. U. S. A. 113, 13744‒13749.

    Article  CAS  Google Scholar 

  7. Pestka S. 1968. Studies on the formation of transfer ribonucleic acid–ribosome complexes: 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. J. Biol. Chem. 243, 2810‒2820.

    CAS  PubMed  Google Scholar 

  8. Pestka S. 1969. Studies on the formation of transfer ribonucleic acid–ribosome complexes: 4. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors. J. Biol. Chem. 244, 1533‒1539.

    CAS  PubMed  Google Scholar 

  9. Gavrilova L.P., Smolyaninov V.V. 1971. Study of the mechanism of translocation in ribosomes: 1. Polyphenylalanine synthesis in Escherichia coli ribosomes without participation of guanosine-5'-triphosphate and protein translation factors. Mol. Biol. (Moscow). 5 (6), 710–717.

    CAS  PubMed  Google Scholar 

  10. Gavrilova L.P., Spirin A.S. 1971. Stimulation of “non-enzymic” translocation in ribosomes by ρ-chloromercuribenzoate. FEBS Lett. 17, 324‒326.

    Article  CAS  PubMed  Google Scholar 

  11. Lucas-Lenard J., Lipmann F. 1971. Protein biosynthesis. Annu. Rev. Biochem. 40, 409‒448.

    Article  CAS  PubMed  Google Scholar 

  12. Gavrilova L.P., Spirin A.S. 1972. A modification of the 30S ribosomal subparticle is responsible for stimulation of “non-enzymatic” translocation by p-chloromercuribenzoate. FEBS Lett. 22, 91‒92.

    Article  CAS  PubMed  Google Scholar 

  13. Gavrilova L.P., Rutkevitch N.M. 1980. Ribosomal synthesis of polyleucine on polyuridylic acid as a template: Contribution of the elongation factors. FEBS Lett. 120, 135‒140

    Article  CAS  PubMed  Google Scholar 

  14. Gavrilova L.P., Perminova I.N., Spirin A.S. 1981. Elongation factor Tu can reduce translation errors in poly(U)-directed cell-free systems. J. Mol. Biol. 149, 69‒78.

    Article  CAS  PubMed  Google Scholar 

  15. Noel J.K., Whitford P.C. 2016. How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome. Nat. Commun. 7, 13314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gavrilova L.P., Kakhniashvili D.G., Smailov S.K. 1984. Stoichiometry of GTP hydrolysis in a poly(U)-dependent cell-free translation system. Determination of GTP/peptide bond ratios during codon-specific elongation and misreading. FEBS Lett. 178, 283‒287.

    Article  CAS  PubMed  Google Scholar 

  17. Kakhniashvili D.G., Smailov S.K., Gavrilova L.P. 1986. The excess GTP hydrolyzed during mistranslation is expended at the stage of EF-Tu-promoted binding of non-cognate aminoacyl-tRNA. FEBS Lett. 196, 103‒107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Finkelstein.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finkelstein, A.V., Gavrilova, L.P. Protein Biosynthesis Proofreading Is Closely Associated with the Existence of Factor-Free Ribosomal Synthesis. Mol Biol 53, 308–311 (2019). https://doi.org/10.1134/S0026893319020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893319020043

Keywords:

Navigation