Molecular Biology

, Volume 53, Issue 3, pp 342–345 | Cite as

New Genetic Marker of Human Predisposition to Severe Forms of Tick-Borne Encephalitis

  • A. V. BarkhashEmail author
  • I. V. Kozlova
  • L. L. Pozdnyakova
  • N. S. Yudin
  • M. I. Voevoda
  • A. G. Romaschenko


The causative agent of tick-borne encephalitis (a neurotropic RNA virus from the Flavivirus genus) can cause both severe paralytic forms of the disease (meningoencephalitis, etc.) and milder nonparalytic forms (fever and meningitis). The organism response to viral infection (and, as a consequence, the nature and outcome of the disease) significantly depends on individual peculiarities of the human organism protective systems predetermined by genome structure. Human genetic predisposition to tick-borne encephalitis has been poorly studied. In the present work, the results of the search for new genes that predetermine the peculiarities and outcome of tick-borne encephalitis in humans are presented. The aim of the work was to verify the association between three previously detected (using the exome sequencing on a limited sample of tick-borne encephalitis patients with severe forms) SNPs: intronic rs3109675 (C/T) in the COL5A1 gene, intronic rs41554313 (A/G) in the POLRMT gene, and intergenic rs10006630 (C/A), and the predisposition to tick-borne encephalitis in a Russian population (using an extended sample of patients with different forms of tick-borne encephalitis). The association of the rs10006630 SNP located in chromosome 4 between the FABP2 and LINC01061 genes with a predisposition to tick-borne encephalitis was confirmed. This SNP can be considered as a new genetic marker of a human predisposition to severe forms of tick-borne encephalitis. The possible regulatory role of this SNP in the functioning of neighboring genes and a mechanism of its effect on the development of predisposition to severe forms of tick-borne encephalitis require further study.


tick-borne encephalitis genetic predisposition single nucleotide polymorphism 



  1. 1.
    Gritsun T.S., Lashkevich V.A., Gould E.A. 2003. Tick-borne encephalitis. Antiviral Res. 57, 129–146.CrossRefGoogle Scholar
  2. 2.
    Ruzek D., Dobler G., Donoso Mantke O. 2010. Tick-borne encephalitis: Pathogenesis and clinical implications. Travel. Med. Infect. Dis. 8, 223–232.CrossRefGoogle Scholar
  3. 3.
    Bogovic P., Strle F. 2015. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 3, 430–441.CrossRefGoogle Scholar
  4. 4.
    Chapman S.J., Hill A.V. 2012. Human genetic susceptibility to infectious disease. Nat. Rev. Genet. 13, 175–188.CrossRefGoogle Scholar
  5. 5.
    Loeb M. 2013. Host genomics in infectious diseases. Infect. Chemother. 45, 253–259.CrossRefGoogle Scholar
  6. 6.
    Yudin N.S., Barkhash A.V., Maksimov V.N., Ignatieva E.V., Romaschenko A.G. 2018. Human genetic predisposition to diseases caused by viruses from Flaviviridae family. Mol. Biol. (Moscow). 52 (2), 165–181.CrossRefGoogle Scholar
  7. 7.
    Barkhash A.V., Perelygin A.A., Babenko V.N., Myasnikova N.G., Pilipenko P.I., Romaschenko A.G., Voevoda M.I., Brinton M.A. 2010. Variability in the 2'-5'-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. J. Infect. Dis. 202, 1813–1818.CrossRefGoogle Scholar
  8. 8.
    Barkhash A.V., Perelygin A.A., Babenko V.N., Brinton M.A., Voevoda M.I. 2012. Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. Antiviral Res. 93, 64–68.CrossRefGoogle Scholar
  9. 9.
    Barkhash A.V., Voevoda M.I., Romaschenko A.G. 2013. Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population. Antiviral Res. 99, 136–138.CrossRefGoogle Scholar
  10. 10.
    Barkhash A.V., Babenko V.N., Voevoda M.I., Romaschenko A.G. 2016. Association of IL28B and IL10 gene polymorphism with predisposition to tick-borne encephalitis in a Russian population. Ticks Tick-Borne Dis. 7, 808–812.CrossRefGoogle Scholar
  11. 11.
    Barkhash A.V., Yurchenko A.A., Yudin N.S., Ignatieva E.V., Kozlova I.V., Borishchuk I.A., Pozdnyakova L.L., Voevoda M.I., Romaschenko A.G. 2018. A matrix metalloproteinase 9 (MMP9) gene single nucleotide polymorphism is associated with predisposition to tick-borne encephalitis virus-induced severe central nervous system disease. Ticks Tick-Borne Dis. 9, 763–767.CrossRefGoogle Scholar
  12. 12.
    Barkhash A.V., Yurchenko A.A., Yudin N.S., Kozlova I.V., Borishchuk I.A., Smol’nikova M.V., Zaitseva O.I., Pozdnyakova L.L., Voevoda M.I., Romaschenko A.G. 2019. Association of ABCB9 and COL22A1 gene polymorphism with predisposition to severe forms of tick-borne encephalitis. Russ. J. Genet. 55 (in press).Google Scholar
  13. 13.
    Neff M.M., Turk E., Kalishman M. 2002. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 18, 613–615.CrossRefGoogle Scholar
  14. 14.
    Zaykin D.V., Pudovkin A.I. 1993. Two programs to estimate significance of χ2 values using pseudo-probability tests. J. Hered. 84, 152.CrossRefGoogle Scholar
  15. 15.
    Greenspan D.S., Byers M.G., Eddy R.L., Cheng W., Jani-Sait S., Shows T.B. 1992. Human collagen gene COL5A1 maps to the q34.2–q34.3 region of chromosome 9, near the locus for nail-patella syndrome. Genomics. 12, 836–837.CrossRefGoogle Scholar
  16. 16.
    Barshad G., Marom S., Cohen T., Mishmar D. 2018. Mitochondrial DNA transcription and its regulation: An evolutionary perspective. Trends Genet. 34, 682–692.CrossRefGoogle Scholar
  17. 17.
    Thumser A.E., Moore J.B., Plant N.J. 2014. Fatty acid binding proteins: Tissue-specific functions in health and disease. Curr. Opin. Clin. Nutr. Metab. Care. 17, 124–129.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Barkhash
    • 1
    Email author
  • I. V. Kozlova
    • 2
  • L. L. Pozdnyakova
    • 3
  • N. S. Yudin
    • 1
  • M. I. Voevoda
    • 1
  • A. G. Romaschenko
    • 1
  1. 1.Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Scientific Centre for Family Health and Human Reproduction ProblemsIrkutskRussia
  3. 3.City Infectious Clinical Hospital No. 1NovosibirskRussia

Personalised recommendations