Advertisement

Molecular Biology

, Volume 53, Issue 2, pp 286–290 | Cite as

Hydrogen Sulfide Donor NaHS Protects Mesenchymal Stem and Melanoma Cells from the Negative Effects of Infrared Laser Irradiation

  • N. V. Andreeva
  • K. V. Zotov
  • V. I. Yusupov
  • A. V. BelyavskyEmail author
MOLECULAR CELL BIOLOGY
  • 3 Downloads

We have established earlier that 835-nm infrared laser irradiation results in a dose-dependent growth inhibition of human mesenchymal stem and melanoma cells and is able to induce cell death. In this work we have demonstrated that hydrogen sulfide donor NaHS is able to protect both cell types from the negative action of laser irradiation and the magnitude of protection depends on NaHS concentration. The mechanism of cell protection by NaHS is primarily attributable to its effects on intracellular processes occurring after irradiation, since the protective effect does not depend on whether NaHS is added before or after irradiation. Moreover, NaHS is able to exert its protective effect even when added 6 hours post irradiation.

Keywords:

hydrogen sulfide infrared laser irradiation melanoma mesenchymal stem cells cytotoxicity 

Notes

REFERENCES

  1. 1.
    Olas B. Hydrogen sulfide in signaling pathways. 2015. Clin. Chim. Acta. 439, 212–218.CrossRefGoogle Scholar
  2. 2.
    Cuevasanta E., Möller M.N., Alvarez B. 2017. Biological chemistry of hydrogen sulfide and persulfides. Arch. Biochem. Biophys. 617, 9–25.CrossRefGoogle Scholar
  3. 3.
    Wallace J.L., Blackler R.W., Chan M.V., Da Silva G.J., Elsheikh W., Flannigan K.L., Gamaniek I., Manko A., Wang L., Motta J.P., Buret A.G. 2015. Anti-inflammatory and cytoprotective actions of hydrogen sulfide: Translation to therapeutics. Antioxid. Redox Signal. 22, 398–410.CrossRefGoogle Scholar
  4. 4.
    Polhemus D.J., Lefer D.J. 2014. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ. Res. 114, 730–737.CrossRefGoogle Scholar
  5. 5.
    Xie Y.H., Zhang N., Li L.F., Zhang Q.Z., Xie L.J., Jiang H., Li L.P., Hao N., Zhang J.X. 2014. Hydrogen sulfide reduces regional myocardial ischemia injury through protection of mitochondrial function. Mol. Med. Rep. 10, 1907–1914.CrossRefGoogle Scholar
  6. 6.
    Andreeva N.V., Zotov K.V., Yegorov E.E., Kalashnikova M.V., Yusupov V.I., Bagratashvili V.N., Be-lyavsky A.V. 2016. The effect of infrared laser irradiation on the growth of human melanoma cells in culture. Biophysics (Moscow). 61 (6), 979‒984.CrossRefGoogle Scholar
  7. 7.
    Andreeva N.V., Zotov K.V., Yegorov Y.Y., Kandarakov O.F., Yusupov V.I., Belyavsky A.V. 2018. Cytotoxic effect of low-intensity infrared laser irradiation on human melanoma cells. Mol. Biol. (Moscow). 52 (6), 1014–1028.CrossRefGoogle Scholar
  8. 8.
    Passarella S., Karu T. 2014. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J. Photochem. Photobiol. B. 140, 344‒358.CrossRefGoogle Scholar
  9. 9.
    Wu S., Zhou F., Wei Y., Chen W.R., Chen Q., Xing D. 2014. Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst. Antioxid. Redox Signal. 20, 733‒746.CrossRefGoogle Scholar
  10. 10.
    Szabo C., Ransy C., Módis K., Andriamihaja M., Murghes B., Coletta C., Olah G., Yanagi K., Bouillaud F. 2014. Regulation of mitochondrial bioenergetic function by hydrogen sulfide: 1. Biochemical and physiological mechanisms. Br. J. Pharmacol. 171, 2099–2122.CrossRefGoogle Scholar
  11. 11.
    Nicholson R.A., Roth S.H., Zhang A., Zheng J., Brookes J., Skrajny B., Bennington R. 1998. Inhibition of respiratory and bioenergetic mechanisms by hydrogen sulfide in mammalian brain. J. Toxicol. Environ. Health A. 54, 491–507.CrossRefGoogle Scholar
  12. 12.
    Paoli P., Giannoni E., Chiarugi P. 2013. Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta. 1833, 3481–3498.CrossRefGoogle Scholar
  13. 13.
    Wen Y.D., Wang H., Kho S.H., Rinkiko S., Sheng X., Shen H.M., Zhu Y.Z. 2013. Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress. PLoS One. 8, e53147.CrossRefGoogle Scholar
  14. 14.
    Yan S.K., Chang T., Wang H., Wu L., Wang R., Meng Q.H. 2006. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 351, 485–491.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. V. Andreeva
    • 1
  • K. V. Zotov
    • 2
  • V. I. Yusupov
    • 2
  • A. V. Belyavsky
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Photon Technologies, Federal Research Center of Crystallography and Photonics, Russian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations