Molecular Biology

, Volume 53, Issue 2, pp 274–285 | Cite as

Small Molecular Inhibitors of DNA Double Strand Break Repair Pathways Increase the ANTI-HBV Activity of CRISPR/Cas9

  • A. P. Kostyusheva
  • D. S. KostyushevEmail author
  • S. A. Brezgin
  • D. N. Zarifyan
  • E. V. Volchkova
  • V. P. Chulanov


The CRISPR/Cas9 nuclease system can effectively suppress the replication of the hepatitis B virus (HBV), while covalently closed circular DNA (cccDNA), a highly resistant form of the virus, persists in the nuclei of infected cells. The most common outcome of DNA double-strand breaks (DSBs) in cccDNA caused by CRISPR/Cas9 is double-strand break repair by nonhomologous end-joining, which results in insertion/deletion mutations. Modulation of the DNA double-strand break repair pathways by small molecules was shown to stimulate CRISPR/Cas9 activity and may potentially be utilized to enhance the elimination of HBV cccDNA. In this work, we used inhibitors of homologous (RI-1) and nonhomologous (NU7026) end-joining and their combination to stimulate antiviral activity of CRISPR/Cas9 on two cell models of HBV in vitro, i.e., the HepG2-1.1merHBV cells containing the HBV genome under the tet-on regulated cytomegalovirus promoter and the HepG2-1.5merHBV cells containing constitutive expression of HBV RNA under the wild-type promoter. The treatment of the cells with RI-1 or NU7026 after lentiviral transduction of CRISPR/Cas9 drops the levels of cccDNA compared to the DMSO-treated control. RI-1 and NU7026 resulted in 5.0–6.5 times more significant reduction in the HBV cccDNA level compared to the mock-control. In conclusion, the inhibition of both homologous and nonhomologous DNA double-strand break repair pathways increases the elimination of HBV cccDNA by CRISPR/Cas9 system in vitro, which may potentially be utilized as a therapeutic approach to treat chronic hepatitis B.


CRISPR/Cas9 hepatitis B virus covalently closed circular DNA lentiviral transduction HR NHEJ DNA double-strand breaks 



  1. 1.
    GBD 2016 Causes of Death Collaborators. 2017. Global, regional, and national age-sex-specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 390 (10100), 1151–1210.Google Scholar
  2. 2.
    Dahari H., Shudo E., Ribeiro R.M., Perelson A.S. 2009. Modeling complex decay profiles of hepatitis B virus during antiviral therapy. Hepatology. 49 (1), 32–38.CrossRefGoogle Scholar
  3. 3.
    Chen Z.-Y., Cheng A.-C., Wang M.-S., Xu D.-W., Zeng W., Li Z. 2007. Antiviral effects of PNA in duck hepatitis B virus infection model. Acta Pharmacol. Sin. 28 (10), 1652–1658.CrossRefGoogle Scholar
  4. 4.
    Tennant B. C., Gerin J. L. 2001. The woodchuck model of hepatitis B virus infection. ILAR J. 42 (2), 89–102.CrossRefGoogle Scholar
  5. 5.
    Schulze-Bergkamen H., Untergasser A., Dax A., Vogel H., Buchler P., Klar E., Lehnert T., Friess H., Buchler M.W., Kirschfink M., Stremmel W., Krammer P.H., Muller M., Protzer U. 2003. Primary human hepatocytes – a valuable tool for investigation of apoptosis and hepatitis B virus infection. J. Hepatol. 38 (6), 736–744.CrossRefGoogle Scholar
  6. 6.
    Konig A., Doring B., Mohr C., Geipel A., Geyer J., Glebe D. 2014. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes. J. Hepatol. 61 (4), 867–875.CrossRefGoogle Scholar
  7. 7.
    Ortega-Prieto A.M., Skelton J.K., Wai S.N., Large E., Lussignol M., Vizcay-Barrena G., Hughes D., Fleck R.A., Thursz M., Catanese M.T., Dorner M. 2018. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat. Commun. 9 (1), 682.CrossRefGoogle Scholar
  8. 8.
    March S., Ramanan V., Trehan K., Ng S., Galstian A., Gural N., Scull M.A., Schlomai A., Mota M.M., Fleming H.E., Khetani S.R., Rice C.M., Bhatia S.N. 2015. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat. Protoc. 10 (12), 2027–2053.CrossRefGoogle Scholar
  9. 9.
    Xia Y., Carpentier A., Cheng X., Block P.D., Zhao Y., Zhang Z., Protzer U., Liang T.J. 2017. Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions. J. Hepatol. 66 (3), 494–503.CrossRefGoogle Scholar
  10. 10.
    Gripon P., Rumin S., Urban S., Le Seyec J., Glaise D., Cannie I., Guyomard C., Lucas J., Trepo C., Guguen-Guillouzo C. 2002. Infection of a human hepatoma cell line by hepatitis B virus. Proc. Natl. Acad. Sci. U. S. A. 99, 15655–15660.CrossRefGoogle Scholar
  11. 11.
    Wang L.Y., Li Y.G., Chen K., Li L., Qu J.L., Qin D.D., Tang H. 2012. Stable expression and integrated hepatitis B virus genome in a human hepatoma cell line. Genet. Mol. Res. 11 (2), 1442–1448.CrossRefGoogle Scholar
  12. 12.
    Verrier E.R., Colpitts C.C., Schuster C., Zeisel M.B., Baumert T.F. 2016. Cell culture models for the investigation of hepatitis B and D virus infection. Viruses. 8 (9), 261.CrossRefGoogle Scholar
  13. 13.
    Lucifora J., Xia Y., Reisinger F., Zhang K., Stadler D., Cheng X., Sprinzl M.F., Koppensteiner H., Makowska Z., Volz T., Remouchamps C., Chou W.M., Thasler W.E., Huser N., Durantel D., et al. 2014. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science. 343 (6176), 1221–1228.CrossRefGoogle Scholar
  14. 14.
    Ramanan V., Shlomai A., Cox D., Schwartz R.E., Michailidis E., Bhatta A., Scott D.A., Zhang F., Rice C.M., Bhatia S.N. 2015. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci. Rep. 5, 10833.CrossRefGoogle Scholar
  15. 15.
    Bloom K., Ely A., Mussolino C., Cathomen T., Arbuthnot P. 2013. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol. Ther. 21 (10), 1889–1897.CrossRefGoogle Scholar
  16. 16.
    Weber N.D., Stone D., Sedlak R.H., De Silva Feelixge H.S., Roychoudhury P., Schiffer J.T., Aubert M., Jerome K.R. 2014. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication. PLoS One. 9 (5), e97579.CrossRefGoogle Scholar
  17. 17.
    Bannikov A.V., Lavrov A.V. 2017. CRISPR/Cas9, the king of genome-editing tools. Mol. Biol. (Moscow). 51 (4), 514–525.CrossRefGoogle Scholar
  18. 18.
    He Z., Proudfoot C., Whitelaw C.B., Lillico S.G. 2016. Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells. Springerplus. 5 (1), 814.CrossRefGoogle Scholar
  19. 19.
    Li H., Sheng C., Liu H., Liu G., Du X., Du J., Zhang L., Li P., Yang C., Qi L., Wang J., Yang X., Jia L., Xie J., Wang L., et al. 2016. An effective molecular target site in hepatitis B virus S gene for Cas9 cleavage and mutational inactivation. Int. J. Biol. Sci. 12 (9), 1104–1113.CrossRefGoogle Scholar
  20. 20.
    Allweiss L., Dandri M. 2017. The role of cccDNA in HBV maintenance. Viruses. 9(6), pii: E156. CrossRefGoogle Scholar
  21. 21.
    Jekimovs C., Bolderson E., Suraweera A., Adams M., O’Byrne K.J., Richard D.J. 2014. Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: The good, the bad, and the promising. Front. Oncol. 4, 86.CrossRefGoogle Scholar
  22. 22.
    Davidson D., Amrein L., Panasci L., Aloyz R. 2013. Small molecules, inhibitors of DNA-PK, targeting DNA repair, and beyond. Front. Pharmacol. 4, 5.CrossRefGoogle Scholar
  23. 23.
    Robert F., Barbeau M., Éthier S., Dostie J., Pelletier J. 2015. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 7 (1), 93.CrossRefGoogle Scholar
  24. 24.
    Budke B., Logan H.L., Kalin J.H., Zelivianskaia A.S., Cameron M.W., Miller L.L., Stark J.M., Kozikowski A.P., Bishop D.K., Connell P.P. 2012. RI-1: A chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res. 40 (15), 7347–7357.CrossRefGoogle Scholar
  25. 25.
    Zhao F., Hou N.B., He X., Zheng Z.R., Ma Q.J., Li L., Zhang Y.H., Zhong H. 2008. Cellular DNA repair cofactors affecting hepatitis B virus infection and replication. World J. Gastroenterol. 14 (32), 5059–5065.CrossRefGoogle Scholar
  26. 26.
    Zhu W., Zie K., Xu Y., Wang L., Chen K., Zhang L., Fang J. 2016. CRISPR/Cas9 produces anti-hepatitis B virus effect in hepatoma cells and transgenic mouse. Virus Res. 217, 125–132.CrossRefGoogle Scholar
  27. 27.
    Liu Y., Zhao M., Gong M., Xu Y., Xie C., Deng H., Li X., Wu H., Wang Z. 2018. Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus. Antiviral Res. 152, 58–67.CrossRefGoogle Scholar
  28. 28.
    Seeger C., Sohn J.A. 2016. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol. Ther. 24 (7), 1258–1266.CrossRefGoogle Scholar
  29. 29.
    Yu C., Liu Y., Ma T., Liu K., Xu S., Zhang Y., Liu H., La Russa M., Xie M., Ding S., Qi L.S. 2015. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 16 (2), 142–147.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. P. Kostyusheva
    • 1
  • D. S. Kostyushev
    • 1
    Email author
  • S. A. Brezgin
    • 1
    • 2
  • D. N. Zarifyan
    • 1
  • E. V. Volchkova
    • 3
  • V. P. Chulanov
    • 1
    • 3
  1. 1.Central Research Institute of Epidemiology, Federal Service for the Oversight of Consumer Protection and WelfareMoscowRussia
  2. 2.Institute of Immunology of Federal Medical-Biological AgencyMoscowRussia
  3. 3.Sechenov Moscow State Medical UniversityMoscowRussia

Personalised recommendations