Molecular Biology

, Volume 52, Issue 6, pp 899–904 | Cite as

Small Noncoding 4.5SH and 4.5SI RNAs and Their Binding to Proteins

  • K. A. Tatosyan
  • A. P. Koval
  • D. A. KramerovEmail author


The functions of small noncoding RNAs 4.5SH and 4.5SI found in murine-like rodents are unclear. These RNAs synthesized by RNA polymerase III are widely expressed in rodent organs and tissues. Using crosslinking assays, it was shown that approximately half of all 4.5SI and 4.5SH RNA molecules were bound to proteins provisionally called X and Y, respectively. An immunoprecipitation experiment showed that both these RNAs were associated with the La protein, which did not crosslink to them. The termini of 4.5SI RNA form a long duplex stem, which makes the molecule more stable than 4.5SH RNA. Modification of the 5'-end sequence destructing the stem of 4.5SI RNA altered its protein-binding properties; after the 3'-end sequence was changed to the complementary, both the stem structure and the RNA binding to protein X were restored. Presumably, this protein plays a role in increasing the half-life of 4.5SI RNA.


4.5S RNA small noncoding RNA RNA-binding proteins La protein rodents 



  1. 1.
    Makarova Yu.A., Kramerov D.A. 2007. Noncoding RNAs. Biochemistry (Moscow). 72, 1127–1148.Google Scholar
  2. 2.
    Jandura A., Krause H.M. 2017. The new RNA world: Growing evidence for long noncoding RNA functionality. Trends Genet. 33, 665–676.CrossRefGoogle Scholar
  3. 3.
    Harada F., Kato N. 1980. Nucleotide sequences of 4.5S RNAs associated with poly(A)-containing RNAs of mouse and hamster cells. Nucleic Acids Res. 8, 1273–1285.CrossRefGoogle Scholar
  4. 4.
    Ro-Choi T.S., Redy R., Henning D., Takano T., Taylor C.W., Busch H. 1972. Nucleotide sequence of 4.5S ribonucleic acid of Novikoff hepatoma cell nuclei. J. Biol. Chem. 247, 3205–3222.Google Scholar
  5. 5.
    Ishida K., Miyauchi K., Kimura Y., Mito M., Okada S., Suzuki T., Nakagawa S. 2015. Regulation of gene expression via retrotransposon insertions and the noncoding RNA 4.5S RNAH. Genes Cells. 20, 887–901.CrossRefGoogle Scholar
  6. 6.
    Tatosyan K.A., Koval A.P., Gogolevskaya I.K., Kra-merov D.A. 2017. 4.5SI and 4.5SH RNAs: Expression in various rodent organs and abundance and distribution in the cell. Mol. Biol. (Moscow). 51 (1), 122–129.CrossRefGoogle Scholar
  7. 7.
    Gogolevskaya I.K., Kramerov D.A. 2002. Evolutionary history of 4.5SI RNA and indication that it is functional. J. Mol. Evol. 54, 354–364.CrossRefGoogle Scholar
  8. 8.
    Gogolevskaya I.K., Koval A.P., Kramerov D.A. 2005. Evolutionary history of 4.5SH RNA. Mol. Biol. Evol. 22, 1546–1554.CrossRefGoogle Scholar
  9. 9.
    Kramerov D.A., Vassetzky N.S. 2011. SINEs. Wiley Interdisc. Rev. RNA. 2, 772–786.CrossRefGoogle Scholar
  10. 10.
    Krayev A.S., Markusheva T.V., Kramerov D.A., Ryskov A.P., Skryabin K.G., Bayev A.A., Georgiev G.P. 1982. Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res. 10, 7461–7475.CrossRefGoogle Scholar
  11. 11.
    Quentin Y. 1994. A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes. Nucleic Acids Res. 22, 2222–2227.CrossRefGoogle Scholar
  12. 12.
    Serdobova I.M., Kramerov D.A. 1998. Short retroposons of the B2 superfamily: Evolution and application for the study of rodent phylogeny. J. Mol. Evol. 46, 202–214.CrossRefGoogle Scholar
  13. 13.
    Gogolevskaya I.K., Kramerov D.A. 2010. 4.5SI RNA genes and the role of their 5'-flanking sequences in the gene transcription. Gene. 451, 32–37.CrossRefGoogle Scholar
  14. 14.
    Koval A.P., Gogolevskaya I.K., Tatosyan K.A., Kra-merov D.A. 2015. A 5'-3' terminal stem in small non-coding RNAs extends their lifetime. Gene. 555, 464–468.CrossRefGoogle Scholar
  15. 15.
    Tatosyan K.A., Kramerov D.A. 2016. Heat shock increases lifetime of a small RNA and induces its accumulation in cells. Gene. 587, 33–41.CrossRefGoogle Scholar
  16. 16.
    Koval A.P., Gogolevskaya I.K., Tatosyan K.A., Kra-merov D.A. 2012. Complementarity of end regions increases the lifetime of small RNAs in mammalian cells. PLoS One. 7, e44157.CrossRefGoogle Scholar
  17. 17.
    Reddy R., Henning D., Tan E., Busch H. 1983. Identification of a La protein binding site in a RNA polymerase III transcript (4.5 I RNA). J. Biol. Chem. 258, 8352–8356.Google Scholar
  18. 18.
    Leinwand L.A., Wydro R.M., Nadal-Ginard B. 1982. Small RNA molecules related to the Alu family of repetitive DNA sequences. Mol. Cell. Biol. 2, 1320–1330.CrossRefGoogle Scholar
  19. 19.
    Maraia R.J., Intine R.V. 2002. La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expression. 10, 41–57.Google Scholar
  20. 20.
    Kobayashi S., Goto S., Anzai K. 1991. Brain-specific small RNA transcript of the identifier sequences is present as a 10S ribonucleoprotein particle. J. Biol. Chem. 266, 4726–4730.Google Scholar
  21. 21.
    Patel S.B., Bellini M. 2008. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res. 36, 6482–6493.CrossRefGoogle Scholar
  22. 22.
    Kiss T., Fayet-Lebaron E., Jady B.E. 2010. Box H/ACA small ribonucleoproteins. Mol. Cell. 37, 597–606.CrossRefGoogle Scholar
  23. 23.
    Bjork P., Wieslander L. 2017. Integration of mRNP formation and export. Cell. Mol. Life Sci. 74, 2875–2897.CrossRefGoogle Scholar
  24. 24.
    Kohler A., Hurt E. 2007. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773.CrossRefGoogle Scholar
  25. 25.
    Maraia R.J., Mattijssen S., Cruz-Gallardo I., Conte M.R. 2017. The La and related RNA-binding proteins (LARPs): Structures, functions, and evolving perspectives. Wiley Interdisc Rev. RNA. 8, e1430.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. A. Tatosyan
    • 1
  • A. P. Koval
    • 1
  • D. A. Kramerov
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations