Advertisement

Molecular Biology

, Volume 52, Issue 6, pp 872–877 | Cite as

The Myocardial Infarction Associated Variant in the MIR196A2 Gene and Presumable Signaling Pathways to Involve miR-196a2 in the Pathological Phenotype

  • G. J. Osmak
  • N. A. Matveeva
  • B. V. Titov
  • O. O. Favorova
GENOMICS. TRANSCRIPTOMICS
  • 11 Downloads

Abstract—

The heritable component of susceptibility to myocardial infraction (MI) remains unexplained, possibly due to the minor effects of genes, which are not obviously associated with the disease. These genes may be integrated in miRNA regulated networks associated with myocardial infarction. A systematic review of the literature led us to selecting rs2910164 (MIR146A), rs11614913 (MIR196A2), and rs3746444 (MIR499А) variants to study the association with the MI phenotype. In ethnic Russians, variant rs11614913*C (MIR196A2) was found to be associated with the risk of myocardial infraction (p = 0.023, OR = 1.74) for the first time; this association was validated in an independent cohort. The gene-gene interaction network for experimentally validated miR-196a2 target genes was built and analyzed. One of its four topological clusters contained the majority of miR-196a2 target genes associated with atherosclerosis, coronary artery disease or myocardial infarction and was enriched with the genes regulating the TGFβ and class I MHC signaling pathways, platelet activation/aggregation, and the cell cycle control. This analysis points towards the role of miR-196a2 in the pathological coronary phenotypes and opens up an avenue for further investigations.

Keywords:

myocardial infarction miRNA target genes allelic polymorphism gene network analysis 

Notes

REFERENCES

  1. 1.
    Roberts R. 2014. Genetics of coronary artery disease. Circ. Res. 114, 1890–1903.CrossRefGoogle Scholar
  2. 2.
    Wu M.-Y., Li C.-J., Hou M.-F., Chu P.-Y. 2017. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int. J. Mol. Sci. 18, E2034.CrossRefGoogle Scholar
  3. 3.
    Girelli D., Martinelli N., Peyvandi F., Olivieri O. 2009. Genetic architecture of coronary artery disease in the genome-wide era: Implications for the emerging “golden dozen” loci. Semin. Thromb. Hemost. 35, 671–682.CrossRefGoogle Scholar
  4. 4.
    Hartiala J., Schwartzman W.S., Gabbay J., Ghazalpour A., Bennett B.J., Allayee H. 2017. The genetic architecture of coronary artery disease: Current knowledge and future opportunities. Curr. Atheroscler. Rep. 19, 6.CrossRefGoogle Scholar
  5. 5.
    Boyle E.A., Li Y.I., Pritchard J.K. 2017. An expanded view of complex traits: From polygenic to omnigenic. Cell. 169, 1177–1186.CrossRefGoogle Scholar
  6. 6.
    Ghiassian S.D., Menche J., Chasman D.I., Giulianini F., Wang R., Ricchiuto P., Aikawa M., Iwata H., Müller C., Zeller T., Sharma A., Wild P., Lackner K., Singh S., Ridker P.M., et al. 2016. Endophenotype network models: Common core of complex diseases. Sci. Rep. 6, 27414.CrossRefGoogle Scholar
  7. 7.
    Eulalio A., Mano M. 2015. MicroRNA screening and the quest for biologically relevant targets. J. Biomol. Screen. 20, 1003–1017.CrossRefGoogle Scholar
  8. 8.
    Peláez N., Carthew R.W. 2012. Biological robustness and the role of microRNAs: A network perspective. Curr. Top. Dev. Biol. 99, 237–255.CrossRefGoogle Scholar
  9. 9.
    Backes C., Khaleeq Q.T., Meese E., Keller A. 2016. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 44, W110–W116.CrossRefGoogle Scholar
  10. 10.
    Bradshaw G., Sutherland H.G., Haupt L.M., Griffiths L.R. 2016. Dysregulated microRNA expression profiles and potential cellular, circulating and polymorphic biomarkers in non-Hodgkin lymphoma. Genes. 7, 130.CrossRefGoogle Scholar
  11. 11.
    Moszyńska A., Gebert M., Collawn J.F., Bartoszewski R. 2017. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 7, 170019.CrossRefGoogle Scholar
  12. 12.
    Hagberg A.A., Schult D.A. Swart P.J. 2008. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy 2008). Pasadena, CA, p. 11.Google Scholar
  13. 13.
    Chou C.-H., Chang N.-W., Shrestha S., Hsu S.-D., Lin Y.-L., Lee W.-H., Yang C.-D., Hong H.-C., Wei T.-Y., Tu S.-J., Tsai T.-R., Ho S.-Y., Jian T.-Y., Wu H.-Y., Chen P.-R., et al. 2016. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 44, D239–D247.CrossRefGoogle Scholar
  14. 14.
    Szklarczyk D., Morris J.H., Cook H., Kuhn M., Wyder S., Simonovic M., Santos A., Doncheva N.T., Roth A., Bork P., Jensen L.J., von Mering C. 2017. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368.CrossRefGoogle Scholar
  15. 15.
    Piñero J., Bravo À., Queralt-Rosinach N., Gutiérrez-Sacristán A., Deu-Pons J., Centeno E., García-García J., Sanz F., Furlong L.I. 2017. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45, D833–D839.CrossRefGoogle Scholar
  16. 16.
    Piñero J., Queralt-Rosinach N., Bravo À., Deu-Pons J., Bauer-Mehren A., Baron M., Sanz F., Furlong L.I. 2015. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford). 2015, bav028. doi 10.1093/database/bav028CrossRefGoogle Scholar
  17. 17.
    Brandes U. 2001. A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177.CrossRefGoogle Scholar
  18. 18.
    Liu X., You L., Zhou R., Zhang J. 2017. Significant association between functional microRNA polymorphisms and coronary heart disease susceptibility: A comprehensive meta-analysis involving 16484 subjects. Oncotarget. 8, 5692.Google Scholar
  19. 19.
    Chen C., Hong H., Chen L., Shi X., Chen Y., Weng Q. 2014. Association of microRNA polymorphisms with the risk of myocardial infarction in a Chinese population. Tohoku J. Exp. Med. 233, 89–94.CrossRefGoogle Scholar
  20. 20.
    Srivastava K., Tyagi K. 2018. Single nucleotide polymorphisms of microRNA in cardiovascular diseases. Clin. Chim. Acta. 478, 101–110.CrossRefGoogle Scholar
  21. 21.
    Xu J., Hu Z., Xu Z., Gu H., Yi L., Cao H., Chen J., Tian T., Liang J., Lin Y. 2009. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat. 30, 1231–1236.CrossRefGoogle Scholar
  22. 22.
    Sung J.-H., Kim S.-H., Yang W.-I., Kim W.-J., Moon J.-Y., Kim I.J., Cha D.-H., Cho S.-Y., Kim J.O., Kim K.A. 2016. miRNA polymorphisms (miR-146a, miR-149, miR-196a2 and miR-499) are associated with the risk of coronary artery disease. Mol. Med. Rep. 14, 2328–2342.CrossRefGoogle Scholar
  23. 23.
    Buraczynska M., Zukowski P., Wacinski P., Ksiazek K., Zaluska W. 2014. Polymorphism in microRNA-196a2 contributes to the risk of cardiovascular disease in type 2 diabetes patients. J. Diabetes Complications. 28, 617–620.CrossRefGoogle Scholar
  24. 24.
    Xie X., Shi X., Xun X., Rao L. 2017. Association between microRNA polymorphisms and coronary heart disease: A meta-analysis. Herz. 42, 593–603.CrossRefGoogle Scholar
  25. 25.
    Hoffman A.E., Zheng T., Yi C., Leaderer D., Weidhaas J., Slack F., Zhang Y., Paranjape T., Zhu Y. 2009. MicroRNA miR-196a-2 and breast cancer: A genetic and epigenetic association study and functional analysis. Cancer Res. 69, 5970–5977.CrossRefGoogle Scholar
  26. 26.
    Redondo S., Navarro-Dorado J., Ramajo M., Medina Ú., Tejerina T. 2012. The complex regulation of TGF-β in cardiovascular disease. Vasc. Health Risk Manag. 8, 533.CrossRefGoogle Scholar
  27. 27.
    Estevez B., Du X. 2017. New concepts and mechanisms of platelet activation signaling. Physiology. 32, 162–177.CrossRefGoogle Scholar
  28. 28.
    Wang S., Fischer P.M. 2008. Cyclin-dependent kinase 9: A key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol. Sci. 29, 302–313.CrossRefGoogle Scholar
  29. 29.
    Porto I., Leone A.M., Crea F., Andreotti F. 2005. Inflammation, genetics, and ischemic heart disease: Focus on the major histocompatibility complex (MHC) genes. Cytokine. 29, 187–196.CrossRefGoogle Scholar
  30. 30.
    Friese M.A., Jones E.Y., Fugger L. 2005. MHC II molecules in inflammatory diseases: Interplay of qualities and quantities. Trends Immunol. 26, 559–561.CrossRefGoogle Scholar
  31. 31.
    Davies R.W., Wells G.A., Stewart A.F., Erdmann J., Shah S.H., Ferguson J.F., Hall A.S., Anand S.S., Burnett M.S., Epstein S.E. 2012. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex: Clinical perspective. Circ. Cardiovasc. Genet. 5, 217–225.CrossRefGoogle Scholar
  32. 32.
    Palikhe A., Sinisalo J., Seppänen M., Valtonen V., Nieminen M.S., Lokki M.L. 2007. Human MHC region harbors both susceptibility and protective haplotypes for coronary artery disease. HLA. 69, 47–55.Google Scholar
  33. 33.
    Huang L., Marvin J.M., Tatsis N., Eisenlohr L.C. 2011. Cutting edge: Selective role of ubiquitin in MHC class I antigen presentation. J. Immunol. 186, 1904–1908.CrossRefGoogle Scholar
  34. 34.
    Garrido C., Paco L., Romero I., Berruguilla E., Stefansky J., Collado A., Algarra I., Garrido F., Garcia-Lora A.M. 2012. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis. 33, 687–693.CrossRefGoogle Scholar
  35. 35.
    Aoki C.A., Borchers A.T., Li M., Flavell R.A., Bowlus C.L., Ansari A.A., Gershwin M.E. 2005. Transforming growth factor β (TGF-β) and autoimmunity. Autoimmun. Rev. 4, 450–459.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • G. J. Osmak
    • 1
    • 2
  • N. A. Matveeva
    • 1
    • 2
  • B. V. Titov
    • 1
  • O. O. Favorova
    • 1
    • 2
  1. 1.National Medical Research Center for CardiologyMoscowRussia
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations