Advertisement

Molecular Biology

, Volume 52, Issue 6, pp 913–921 | Cite as

Structure of Potato Virus A Coat Protein Particles and Their Dissociation

  • A. L. KsenofontovEmail author
  • E. N. Dobrov
  • N. V. Fedorova
  • A. M. Arutyunyan
  • A. E. Golanikov
  • L. Järvekülg
  • E. V. Shtykova
STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • 26 Downloads

Abstract—

This paper reports on a complex structural analysis of the potato virus A coat protein using a set of complementary physico-chemical methods. We have demonstrated previously that this protein does not exist as individual subunits in solution and undergoes association into oligomers with subsequent transition to β‑conformation. The purpose of the present work was to study the possible mechanisms of this transformation and to search for methods that dissociate protein oligomers. To analyze the low resolution protein structure in solution, small-angle X-ray scattering was used. Stable particles representing clusters of 30 coat protein subunits were present even in an aqueous salt solution with a high ionic strength and pH (pH 10.5; 0.5 M NaCl). The particles did not dissociate in the presence of 10 mM dextran sulfates (15 and 100 kDa). Dissociation in the presence of 5.2 mM sodium dodecyl sulfate results in the formation of the subunit–detergent complexes consisting of 10–12 small particles joined together like “beads on a string”. Similar effects of sodium dodecyl sulfate were shown for serum albumins (bovine and human). Denaturation of the potato virus A coat protein molecules occurs in the presence of detergent concentrations that are seven times lower than that in albumins (5.2 and 35 mM), which confirms low stability of the potato virus A coat protein. Using spectral methods, preservation of the secondary structure and loss of the tertiary structure of the protein in its complex with sodium dodecyl sulfate have been demonstrated. Possible mechanism for protein particle formation through the interaction between unordered terminal domains and their transformation into β‑structures has been suggested.

Keywords:

potyviruses coat protein potato virus A virus-like particles physico-chemical methods small-angle X-ray scattering dextran sulfate sodium dodecyl sulfate disordered and β-structures 

Notes

REFERENCES

  1. 1.
    Uversky V.N. 2013. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta. 1834, 932−951.CrossRefGoogle Scholar
  2. 2.
    Ksenofontov A.L., Paalme V., Arutyunyan A.M., Semenyuk P.I., Fedorova N.V., Rumvolt R., Baratova L.A., Jarvekulg L., Dobrov E.N. 2013. Partially disordered structure in intravirus coat protein of potyvirus potato virus A. PLoS One. 8, e67830.CrossRefGoogle Scholar
  3. 3.
    Zamora M., Mendez-Lopez E., Agirrezabala X., Cuesta R., Lavin J.L., Sanchez-Pina M.A., Aranda M.A., Valle M. 2017. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. Science Adv. 3, eaao2182.Google Scholar
  4. 4.
    Wei T., Huang T.S., McNeil J., Laliberte J.F., Hong J., Nelson R.S., Wang A. 2010. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J. Virol. 84, 799−809.CrossRefGoogle Scholar
  5. 5.
    Ksenofontov A.L., Parshina E.Y., Fedorova N.V., Arutyunyan A.M., Rumvolt R., Paalme V., Baratova L.A., Jarvekulg L., Dobrov E.N. 2016. Heating-induced transition of Potyvirus Potato Virus A coat protein into beta-structure. J. Biomol. Struct. Dyn. 34, 250−258.CrossRefGoogle Scholar
  6. 6.
    Dobrov E.N., Nikitin N.A., Trifonova E.A., Parshina E.Y., Makarov V.V., Maksimov G.V., Karpova O.V., Atabekov J.G. 2014. β-Structure of the coat protein subunits in spherical particles generated by tobacco mosaic virus thermal denaturation. J. Biomol. Struct. Dyn. 32, 701−708.CrossRefGoogle Scholar
  7. 7.
    Nikitin N., Ksenofontov A., Trifonova E., Arkhipenko M., Petrova E., Kondakov O., Kirpichnikov M., Atabekov J., Dobrov E., Karpova O. 2016. Thermal conversion of filamentous potato virus X into spherical particles with different properties from virions. FEBS Lett. 590, 1543−1551.CrossRefGoogle Scholar
  8. 8.
    Anindya R., Savithri H.S. 2003. Surface-exposed amino- and carboxy-terminal residues are crucial for the initiation of assembly in Pepper vein banding virus: a flexuous rod-shaped virus. Virology. 316, 325−336.CrossRefGoogle Scholar
  9. 9.
    McDonald J.G., Beveridge T.J., Bancroft J.B. 1976. Self-assembly of protein from a flexuous virus. Virology. 69, 327−331.CrossRefGoogle Scholar
  10. 10.
    Ksenofontov A.L., Dobrov E.N., Fedorova N.V., Serebryakova M.V., Prusov A.N., Baratova L A., Paalme V., Jarvekulg L., Shtykova E.V. 2018. Isolated Potato Virus A coat protein possesses unusual properties and forms different short virus-like particles, J. Biomol. Struct. Dyn. 36, 1728−1738.CrossRefGoogle Scholar
  11. 11.
    Semenyuk P.I., Moiseeva E.V., Stroylova Y.Y., Lotti M., Izumrudov V.A., Muronetz V.I. 2015. Sulfated and sulfonated polymers are able to solubilize efficiently the protein aggregates of different nature. Arch. Biochem. Biophys. 567, 22−29.CrossRefGoogle Scholar
  12. 12.
    Semenyuk P.I., Muronetz V.I., Haertle T., Izumrudov V.A. 2013. Effect of poly(phosphate) anions on glyceraldehyde-3-phosphate dehydrogenase structure and thermal aggregation: Comparison with influence of poly(sulfoanions). Biochim. Biophys. Acta. 1830, 4800−4805.CrossRefGoogle Scholar
  13. 13.
    Blanchet C.E., Svergun D.I. 2013. Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Ann. Rev. Phys. Chem. 64, 37−54.CrossRefGoogle Scholar
  14. 14.
    Shtykova E.V., Baratova L.A., Fedorova N.V., Radyukhin V.A., Ksenofontov A.L., Volkov V.V., Shi-shkov A.V., Dolgov A.A., Shilova L.A., Batishchev O.V., Jeffries C.M., Svergun D.I. 2013. Structural analysis of influenza A virus matrix protein M1 and its self-assemblies at low pH. PloS One. 8, e82431.CrossRefGoogle Scholar
  15. 15.
    Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajda M., Gorba C., Mertens H.D. T., Konarev P.V., Svergun D.I. 2012. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342−350.CrossRefGoogle Scholar
  16. 16.
    Baratova L.A., Efimov A.V., Dobrov E.N., Fedorova N.V., Hunt R., Badun G.A., Ksenofontov A.L., Torrance L., Jarvekulg L. 2001. In situ spatial organization of Potato Virus A coat protein subunits as assessed by tritium bombardment. J. Virology. 75, 9696−9702.CrossRefGoogle Scholar
  17. 17.
    Goodman R.M., McDonald J.G., Horne R.W., Bancroft J.B. 1976. Assembly of flexuous plant viruses and their proteins. Phil. Trans. R. Soc. London B: Biol. Sci. 276, 173−179.CrossRefGoogle Scholar
  18. 18.
    Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680‒685.CrossRefGoogle Scholar
  19. 19.
    Ksenofontov A.L., Kozlovskii V.S., Kordyukova L.V., Radyukhin V.A., Timofeeva A.V., Dobrov E.N. 2006. Determination of concentration and aggregate size in influenza virus preparations from true UV absorption spectra. Mol. Biol. (Moscow). 40 (1), 152–158.CrossRefGoogle Scholar
  20. 20.
    Louis-Jeune C., Andrade-Navarro M.A., Perez-Iratxeta C. 2012. Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins. 80, 374−381.CrossRefGoogle Scholar
  21. 21.
    Blanchet C.E., Spilotros A., Schwemmer F., Grae-wert M.A., Kikhney A., Jeffries C.M., Franke D., Mark D., Zengerle R., Cipriani F., Fiedler S., Roessle M., Svergun D.I. 2015. Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY). J. Appl. Crystallogr. 48, 431−443.CrossRefGoogle Scholar
  22. 22.
    Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. 2003. PRIMUS: A Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277−1282.CrossRefGoogle Scholar
  23. 23.
    Guinier A. 1939. La diffraction des rayons X aux très petits angles: application à l'étude de phénomènes ultramicroscopiques. Paris: Univ. de Paris.Google Scholar
  24. 24.
    Glatter O., Kratky O. 1982. Small Angle X-ray Scattering. London: Academic.Google Scholar
  25. 25.
    Svergun D.I. 1992. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495−503.CrossRefGoogle Scholar
  26. 26.
    Svergun D.I. 1999. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879−2886.CrossRefGoogle Scholar
  27. 27.
    Volkov V.V., Svergun D.I. 2003. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860−864.CrossRefGoogle Scholar
  28. 28.
    Walker J.M. 2005. The Proteomics Protocols Handbook. Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  29. 29.
    Kyte J., Doolittle R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105−132.CrossRefGoogle Scholar
  30. 30.
    Argos P., Rao J.K. 1986. Prediction of protein structure. Meth. Enzymol. 130, 185−207.CrossRefGoogle Scholar
  31. 31.
    Abraham D.J., Leo A.J. 1987. Extension of the fragment method to calculate amino acid zwitterion and side chain partition coefficients. Proteins. 2, 130−152.CrossRefGoogle Scholar
  32. 32.
    Svergun D.I., Feigin L.A., Taylor G.W. 1987. Structure Analysis by Small-Angle X-ray and Neutron Scattering. New York: Plenum.Google Scholar
  33. 33.
    Shirahama K., Tsujii K., Takagi T. 1974. Free-boundary electrophoresis of sodium dodecyl sulfate-protein polypeptide complexes with special reference to SDS-polyacrylamide gel electrophoresis. J. Biochem. 75, 309−319.CrossRefGoogle Scholar
  34. 34.
    Guo X.H., Zhao N.M., Chen S.H., Teixeira J. 1990. Small-angle neutron scattering study of the structure of protein/detergent complexes. Biopolymers. 29, 335−346.CrossRefGoogle Scholar
  35. 35.
    Chen S.H., Teixeira J. 1986. Structure and fractal dimension of protein–detergent complexes. Phys. Rev. Lett. 57, 2583−2586.CrossRefGoogle Scholar
  36. 36.
    Turro N.J., Lei X.G., Ananthapadmanabhan K.P., Aronson M. 1995. Spectroscopic probe analysis of protein–surfactant interactions: The Bsa/Sds system. Langmuir. 11, 2525−2533.CrossRefGoogle Scholar
  37. 37.
    Michnik A. 2003. Thermal stability of bovine serum albumin DSC study. J. Therm. Anal. Calorim. 71, 509−519.CrossRefGoogle Scholar
  38. 38.
    Wetzel R., Chrunyk B.A. 1994. Inclusion body formation by interleukin-1 beta depends on the thermal sensitivity of a folding intermediate. FEBS Lett. 350, 245−248.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. L. Ksenofontov
    • 1
    Email author
  • E. N. Dobrov
    • 1
  • N. V. Fedorova
    • 1
  • A. M. Arutyunyan
    • 1
  • A. E. Golanikov
    • 2
  • L. Järvekülg
    • 3
  • E. V. Shtykova
    • 2
    • 4
  1. 1.Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscowRussia
  2. 2.Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of SciencesMoscowRussia
  3. 3.Department of Chemistry and Biotechnology, Tallinn University of TechnologyTallinnEstonia
  4. 4.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations