Advertisement

Molecular Biology

, Volume 52, Issue 6, pp 836–845 | Cite as

Proinflammatory and Immunoregulatory Functions of Interleukin 6 as Identified by Reverse Genetics

  • M. S. DrutskayaEmail author
  • V. S. Gogoleva
  • K.-S. N. Atretkhany
  • E. O. Gubernatorova
  • R. V. Zvartsev
  • M. A. Nosenko
  • S. A. NedospasovEmail author
REVIEWS
  • 11 Downloads

Abstract

Reverse genetics approach, involving genome editing, makes it possible not only to establish the nonredundant and unique functions of genes and their products, but also to construct animal models for biomedical research. Interleukin 6 (IL-6) is an important immunoregulatory and proinflammatory cytokine that differs from many related proteins in having a rather complicated signal transduction scheme. Apart from the multiple functions of IL-6, the most relevant biological problem of recent years was establishing what cells produce IL-6, in what form IL-6 is produced, what cells are recipients of the IL-6 signal, and what are the downstream events and physiological consequences of the IL-6 signaling cascade. Because IL-6 is involved in the pathogenesis of many diseases and is a drug target, understanding the mechanisms of its normal and pathogenic effects is important for the clinics. The review summarizes the recent data available in the field.

Keywords:

IL-6 gp130 mouse models experimental autoimmune encephalomyelitis asthma inflammation genome editing 

Notes

REFERENCES

  1. 1.
    Gauldie J., Richards C., Harnish D., Lansdorp P., Baumann H. 1987. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc. Natl. Acad. Sci. U. S. A. 84 (20), 7251–7255.CrossRefGoogle Scholar
  2. 2.
    McLaughlin T., Ackerman S.E., Shen L., Engleman E. 2017. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Invest. 127 (1), 5–13.CrossRefGoogle Scholar
  3. 3.
    Gudiksen A., Schwartz C.L., Bertholdt L., Joensen E., Knudsen J.G., Pilegaard H. 2016. Lack of skeletal muscle IL-6 affects pyruvate dehydrogenase activity at rest and during prolonged exercise. PLoS One. 11 (6), e0156460.CrossRefGoogle Scholar
  4. 4.
    Schuster V., Herold M., Wachter H., Reibnegger G. 1993. Serum concentrations of interferon gamma, interleukin-6 and neopterin in patients with infectious mononucleosis and other Epstein-Barr virus-related lymphoproliferative diseases. Infection. 21 (4), 210–213.CrossRefGoogle Scholar
  5. 5.
    Drutskaya M.S., Nosenko M.A., Atretkhany K.-S.N., Efimov G.A., Nedospasov S.A. 2015. Interleukin-6: From molecular mechanisms of signal transduction to physiological properties and therapeutic targeting. Mol. Biol. (Moscow). 49 (6), 837–842.CrossRefGoogle Scholar
  6. 6.
    Schaper F., Rose-John S. 2015. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 26 (5), 475–487.CrossRefGoogle Scholar
  7. 7.
    Pflanz S., Hibbert L., Mattson J., Rosales R., Vaisberg E., Bazan J.F., Phillips J.H., McClanahan T.K., de Waal Malefyt R., Kastelein R.A. 2004. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol. 172 (4), 2225–2231.CrossRefGoogle Scholar
  8. 8.
    Heink S., Yogev N., Garbers C., Herwerth M., Aly L., Gasperi C., Husterer V., Croxford A.L., Moller-Hackbarth K., Bartsch H.S. Sotlar K., Krebs S., Regen T., Blum H., Hemmer B., et al. 2017. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 18 (1), 74–85.CrossRefGoogle Scholar
  9. 9.
    Bettelli E., Carrier Y., Gao W., Korn T., Strom T.B., Oukka M., Weiner H.L., Kuchroo V.K. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441 (7090), 235–238.CrossRefGoogle Scholar
  10. 10.
    Veldhoen M., Hocking R.J., Atkins C.J., Locksley R.M., Stockinger B. 2006. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24 (2), 179–189.CrossRefGoogle Scholar
  11. 11.
    Ivanov I.I., McKenzie B.S., Zhou L., Tadokoro C.E., Lepelley A., Lafaille J.J., Cua D.J., Littman D.R. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126 (6), 1121–1133.CrossRefGoogle Scholar
  12. 12.
    Hunter C.A., Jones S.A. 2015. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16 (5), 448–457.CrossRefGoogle Scholar
  13. 13.
    Harker J.A., Lewis G.M., Mack L., Zuniga E.I. 2011. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science. 334 (6057), 825–829.CrossRefGoogle Scholar
  14. 14.
    Johnston R.J., Poholek A.C., DiToro D., Yusuf I., Eto D., Barnett B., Dent A.L., Craft J., Crotty S. 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 325 (5943), 1006–1010.CrossRefGoogle Scholar
  15. 15.
    Nurieva R.I., Chung Y., Martinez G.J., Yang X.O., Tanaka S., Matskevitch T.D., Wang Y.H., Dong C. 2009. Bcl6 mediates the development of T follicular helper cells. Science. 325 (5943), 1001–1005.CrossRefGoogle Scholar
  16. 16.
    Vinuesa C.G., Tangye S.G., Moser B., Mackay C.R. 2005. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5 (11), 853–865.CrossRefGoogle Scholar
  17. 17.
    King C., Tangye S.G., Mackay C.R. 2008. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766.CrossRefGoogle Scholar
  18. 18.
    Gallucci R.M., Simeonova P.P., Matheson J.M., Kommineni C., Guriel J.L., Sugawara T., Luster M.I. 2000. Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB J. 14 (15), 2525–2531.CrossRefGoogle Scholar
  19. 19.
    Lin Z.Q., Kondo T., Ishida Y., Takayasu T., Mukaida N. 2003. Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J. Leukoc. Biol. 73 (6), 713–721.CrossRefGoogle Scholar
  20. 20.
    Bianco S. 1989. Pharmacologic therapy of bronchial asthma. Recent Prog. Med. 80 (7–8), 383–392.Google Scholar
  21. 21.
    Grivennikov S., Karin E., Terzic J., Mucida D., Yu G.Y., Vallabhapurapu S., Scheller J., Rose-John S., Cheroutre H., Eckmann L., Karin M. 2009. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 15 (2), 103–113.CrossRefGoogle Scholar
  22. 22.
    Garbers C., Heink S., Korn T., Rose-John S. 2018. Interleukin-6: Designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov. 17 (6), 395–412.CrossRefGoogle Scholar
  23. 23.
    Suematsu S., Matsuda T., Aozasa K., Akira S., Nakano N., Ohno S., Miyazaki J., Yamamura K., Hirano T., Kishimoto T. 1989. IgG1 plasmacytosis in interleukin 6 transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 86 (19), 7547–7551.CrossRefGoogle Scholar
  24. 24.
    Zvartsev R.V., Korshunova D.S., Gorshkova E.A., Nosenko M.A., Korneev K.V., Maksimenko O.G., Korobko I.V., Kuprash D.V., Drutskaya M.S., Nedospasov S.A., Deikin A.V. 2018. Neonatal lethality and inflammatory phenotype in new transgenic mice with human interleukin 6 overexpression in myeloid cells. Dokl. Akad. Nauk (in press).Google Scholar
  25. 25.
    Olleros M.L., Chavez-Galan L., Segueni N., Bouri-gault M.L., Vesin D., Kruglov A.A., Drutskaya M.S., Bisig R., Ehlers S., Aly S.,Walter K., Kuprash D.V., Chouchkova M., Kozlov S.V., Erard F., et al. 2015. Control of mycobacterial infections in mice expressing human tumor necrosis factor (TNF) but not mouse TNF. Infect. Immun. 83 (9), 3612–3623.CrossRefGoogle Scholar
  26. 26.
    Ueda O., Tateishi H., Higuchi Y., Fujii E., Kato A., Kawase Y., Wada N.A., Tachibe T., Kakefuda M., Goto C., Kawaharada M., Shimaoka S., Hattori K., Jishage K. 2013. Novel genetically-humanized mouse model established to evaluate efficacy of therapeutic agents to human interleukin-6 receptor. Sci. Rep. 3, 1196.CrossRefGoogle Scholar
  27. 27.
    Gorshkova E.A., Nedospasov S.A., Shilov E.S. 2016. Evolutionary plasticity of IL-6 cytokine family. Mol. Biol. (Moscow). 50 (6), 918–926.CrossRefGoogle Scholar
  28. 28.
    Samoilova E.B., Horton J.L., Hilliard B., Liu T.S., Chen Y. 1998. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: Roles of IL-6 in the activation and differentiation of autoreactive T cells. J. Immunol. 161 (12), 6480–6486.Google Scholar
  29. 29.
    Okuda Y., Sakoda S., Bernard C.C., Fujimura H., Saeki Y., Kishimoto T., Yanagihara T. 1998. IL-6-deficient mice are resistant to the induction of experimental autoimmune encephalomyelitis provoked by myelin oligodendrocyte glycoprotein. Int. Immunol. 10 (5), 703–708.CrossRefGoogle Scholar
  30. 30.
    Korn T., Mitsdoerffer M., Croxford A.L., Awasthi A., Dardalhon V.A., Galileos G., Vollmar P., Stritesky G.L., Kaplan M.H., Waisman A., Kuchroo V.K., Oukka M. 2008. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. U. S. A. 105 (47), 18460–18465.CrossRefGoogle Scholar
  31. 31.
    Chaudhry A., Rudra D., Treuting P., Samstein R.M., Liang Y., Kas A., Rudensky A.Y. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 326 (5955), 986–991.CrossRefGoogle Scholar
  32. 32.
    Lin Y.L., Chen S.H., Wang J.Y. 2016. Critical role of IL-6 in dendritic cell-induced allergic inflammation of asthma. J. Mol. Med. (Berl.). 94 (1), 51–59.CrossRefGoogle Scholar
  33. 33.
    Gubernatorova E.O., Gorshkova E.A., Namakanova O.A., Zvartsev R.V., Hidalgo J., Drutskaya M.S., Tumanov A.V., Nedospasov S.A. 2018. Non-redundant functions of IL-6 produced by macrophages and dendritic cells in allergic airway inflammation. Front. Immunol. (in press).Google Scholar
  34. 34.
    Riethmueller S., Ehlers J.C., Lokau J., Dusterhoft S., Knittler K., Dombrowsky G., Grotzinger J., Rabe B., Rose-John S., Garbers C. 2016. Cleavage site localization differentially controls interleukin-6 receptor proteolysis by ADAM10 and ADAM17. Sci. Rep. 6, 25550.CrossRefGoogle Scholar
  35. 35.
    Chalaris A., Garbers C., Rabe B., Rose-John S., Scheller J. 2011. The soluble interleukin 6 receptor: Generation and role in inflammation and cancer. Eur. J. Cell Biol. 90 (6–7), 484–494.CrossRefGoogle Scholar
  36. 36.
    Yoshida K., Taga T., Saito M., Suematsu S., Kumanogoh A., Tanaka T., Fujiwara H., Hirata M., Yamagami T., Nakahata T. et al. 1996. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc. Natl. Acad. Sci. U. S. A. 93 (1), 407–411.CrossRefGoogle Scholar
  37. 37.
    Betz U.A., Bloch W., van den Broek M., Yoshida K., Taga T., Kishimoto T., Addicks K., Rajewsky K., Muller W. 1998. Postnatally induced inactivation of gp130 in mice results in neurological, cardiac, hematopoietic, immunological, hepatic, and pulmonary defects. J. Exp. Med. 188 (10), 1955–1965.CrossRefGoogle Scholar
  38. 38.
    Nishihara M., Ogura H., Ueda N., Tsuruoka M., Kitabayashi C., Tsuji F., Aono H., Ishihara K., Huseby E., Betz U.A. Murakami M., Hirano T. 2007. IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int. Immunol. 19 (6), 695–702.CrossRefGoogle Scholar
  39. 39.
    Haroon F., Drogemuller K., Handel U., Brunn A., Reinhold D., Nishanth G., Mueller W., Trautwein C., Ernst M., Deckert M., Schlüter D. 2011. Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J. Immunol. 186 (11), 6521–6531.CrossRefGoogle Scholar
  40. 40.
    Holz K., Prinz M., Brendecke S.M., Holscher A., Deng F., Mitrucker H.W., Rose-John S., Holscher C. 2018. Differing outcome of experimental autoimmune encephalitis in macrophage/neutrophil- and T cell-specific gp130-deficient mice. Front. Immunol. 9, 836.CrossRefGoogle Scholar
  41. 41.
    Crotty S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity. 41 (4), 529–542.CrossRefGoogle Scholar
  42. 42.
    Nish S.A., Schenten D., Wunderlich F.T., Pope S.D., Gao Y., Hoshi N., Yu S., Yan X., Lee H.K., Pasman L. Brodsky I., Yordy B., Zhao H., Brüning J., Medzhitov R. 2014. T cell-intrinsic role of IL-6 signaling in primary and memory responses. eLife. 3, e01949.CrossRefGoogle Scholar
  43. 43.
    Wunderlich F.T., Strohle P., Konner A.C., Gruber S., Tovar S., Bronneke H.S., Juntti-Berggren L., Li L.S., van Rooijen N., Libert C., Berggren P.O., Bruning J.C. 2010. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 12 (3), 237–249.CrossRefGoogle Scholar
  44. 44.
    Mauer J., Chaurasia B., Goldau J., Vogt M.C., Ruud J., Nguyen K.D., Theurich S., Hausen A.C., Schmitz J., Bronneke H.S., Estevez E., Allen T.L., Mesaros A., Partridge L., Febbraio M.A., et al. 2014. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat. Immunol. 15 (5), 423–430.CrossRefGoogle Scholar
  45. 45.
    Sommer J., Engelowski E., Baran P., Garbers C., Floss D.M., Scheller J. 2014. Interleukin-6, but not the interleukin-6 receptor plays a role in recovery from dextran sodium sulfate-induced colitis. Int. J. Mol. Med. 34 (3), 651–660.CrossRefGoogle Scholar
  46. 46.
    Aden K., Breuer A., Rehman A., Geese H., Tran F., Sommer J., Waetzig G.H., Reinheimer T.M., Schreiber S., Rose-John S., Scheller J., Rosenstiel P. 2016. Classic IL-6R signalling is dispensable for intestinal epithelial proliferation and repair. Oncogenesis. 5 (11), e270.CrossRefGoogle Scholar
  47. 47.
    Smolen J.S., Beaulieu A., Rubbert-Roth A., Ramos-Remus C., Rovensky J., Alecock E., Woodworth T., Alten R., Investigators O. 2008. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): A double-blind, placebo-controlled, randomised trial. Lancet. 371 (9617), 987–997.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. S. Drutskaya
    • 1
    • 2
    Email author
  • V. S. Gogoleva
    • 1
    • 2
  • K.-S. N. Atretkhany
    • 1
    • 2
  • E. O. Gubernatorova
    • 1
    • 2
  • R. V. Zvartsev
    • 1
  • M. A. Nosenko
    • 1
    • 2
  • S. A. Nedospasov
    • 1
    • 2
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Biological Faculty, Moscow State UniversityMoscowRussia

Personalised recommendations