Molecular Biology

, Volume 52, Issue 6, pp 878–890 | Cite as

Cytotoxic Effect of Low-Intensity Infrared Laser Irradiation on Human Melanoma Cells

  • N. V. Andreeva
  • K. V. Zotov
  • Y. Y. Yegorov
  • O. F. Kandarakov
  • V. I. Yusupov
  • A. V. BelyavskyEmail author


Continuous low-intensity laser irradiation (LILI) affects the state of cells in culture, including their proliferation rate. Data collected with various cell models vary significantly, but most studies have reported positive effects of LILI on cell proliferation. The effects of continuous infrared LILI (835 nm) was studied using three independent different melanoma cell lines. The LILI effect was shown to strongly depend on the irradiation dose. Higher doses (230 kJ/m2) significantly suppressed the cell growth. A further increase in LILI dose led to a significant cytotoxic effect, which increased disproportionately quickly with the increasing light intensity. Human mesenchymal stem cells (MSCs) were found to be significantly more resistant to the cytotoxic effect of higher-dose LILI. Importantly, the effects were not due to the difference in culture conditions. Control experiments showed that 15 non-melanoma tumor cell lines were more resistant to LILI than melanoma cells. Selective sensitivity of melanoma cells to LILI in vitro was assumed to provide a basis for LILI-based approaches to melanoma treatment.


melanoma lasers infrared low-intensity laser irradiation mesenchymal stem cells cytotoxicity 



  1. 1.
    Illarionov V.E. 1994. Tekhnika i metodiki protsedur lazernoi terapii (Laser Therapy Procedures: Techniques and Methodology). Moscow: Meditsina.Google Scholar
  2. 2.
    Baxter G.D. 1994. Therapeutic Lasers: Theory and Practice. London: Churchill Livingstone.Google Scholar
  3. 3.
    Tuner J., Hode L. 1999. Low Level Laser Therapy— Clinical Practice and Scientific Background. Spjutvagen: Prima Books,.Google Scholar
  4. 4.
    Balakirev S.A., Useinov A.A. 2007. Quantum therapy in child oncology. Detskaya Onkologiya. 1, 15‒19.Google Scholar
  5. 5.
    Karu T.I. 2007. Ten Lectures on Basic Science of Laser Phototheraphy. Spjutvagen: Prima Books.Google Scholar
  6. 6.
    Schartinger V.H., Galvan O., Riechelmann H., Dudás J. 2012. Differential responses of fibroblasts, non-neoplastic epithelial cells, and oral carcinoma cells to low-level laser therapy. Supp. Care Cancer. 20, 523–529.CrossRefGoogle Scholar
  7. 7.
    Pinheiro A.L., Carneiro N.S., Vieira A.L., Brugnera A.Jr., Zanin F.A., Barros R.A., Silva O.S. 2002. Effects of low-level laser therapy on malignant cells: An in vitro study. J. Clin. Laser Med. Surg. 20, 23–26.CrossRefGoogle Scholar
  8. 8.
    Frigo L., Luppi J.S., Favero G.M., Maria D.A., Penna S.C., Bjordal J.M., Bensadoun R.J., Lopes-Martins R.A. 2009. The effect of low-level laser irradiation (In-Ga-Al-AsP ‒ 660 nm) on melanoma in vitro and in vivo. BMC Cancer. 9, 404.CrossRefGoogle Scholar
  9. 9.
    Renno A.C., McDonnell P.A., Parizotto N.A., Laakso E.L. 2007. The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed. Laser Surg. 25, 275–280.CrossRefGoogle Scholar
  10. 10.
    Castro J.L., Pinheiro A.L., Werneck C.E., Soares C.P. 2005. The effect of laser therapy on the proliferation of oral KB carcinoma cells: An in vitro study. Photomed. Laser Surg. 23, 586–589.CrossRefGoogle Scholar
  11. 11.
    Yu W., Naim J.O., Lanzafame R.J. 1994. The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem. Photobiol. 59, 167‒170.CrossRefGoogle Scholar
  12. 12.
    Chudnovskii V.M., Leonova G.N., Skopinov S.A., Drozdov A.L., Yusupov V.I. 2002. Biologicheskie modeli i fizicheskie mekhanizmy lazernoi terapii (Biological Models and Physical Mechanisms of Laser Therapy). Vladivostok: Dal’nauka.Google Scholar
  13. 13.
    Mognato M., Squizzato F., Facchin F., Zaghetto L., Corti L. 2004. Cell growth modulation of human cells irradiated in vitro with low-level laser therapy. Photomed. Laser Surg. 22, 523‒526.CrossRefGoogle Scholar
  14. 14.
    Werneck C.E., Pinheiro A.L., Pacheco M.T., Soares C.P., De Castro J.L. 2005. Laser light is capable of inducing proliferation of carcinoma cells in culture: A spectroscopic in vitro study. Photomed. Laser Surg. 23, 300‒303.CrossRefGoogle Scholar
  15. 15.
    Dastanpour S., Beitollahi J., Saber K. 2015. The effect of low-level laser therapy on human leukemic cells. J. Lasers Med. Sci. 6, 74‒79.Google Scholar
  16. 16.
    Andreeva N.V., Zotov K.V., Yegorov Y.E., Kalashnikova M.V., Yusupov V.I., Bagratashvili V.N., Belyavsky A.V. 2016. The effect of infrared laser irradiation on the growth of human melanoma cells in culture. Biophysics (Moscow). 61 (6), 979‒984.CrossRefGoogle Scholar
  17. 17.
    Boregowda S.V., Krishnappa V., Chambers J.W., Lograsso P.V., Lai W.T., Ortiz L.A., Phinney D.G. 2012. Atmospheric oxygen inhibits growth and differentiation of marrow-derived mouse mesenchymal stem cells via a p53-dependent mechanism: implications for long-term culture expansion. Stem Cells. 30, 975‒978.CrossRefGoogle Scholar
  18. 18.
    Tsai C.C., Chen Y.J., Yew T.L., Chen L.L., Wang J.Y., Chiu C.H., Hung S.C. 2011. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood. 117, 459‒469.CrossRefGoogle Scholar
  19. 19.
    Kandarakov O.F., Kopantseva E.E., Belyavsky A.V. 2016. Proliferation of Proliferation of mesenchymal stem cells and melanoma cells in a co-culture system and effect of experimental conditions in interpretation of the results. Klet. Tekhnol. Biol. Med., No. 3, 160‒167.Google Scholar
  20. 20.
    Karu T.I., Pyatibrat L.V., Kalendo G.S. 2001. Cell attachment modulation by radiation from a pulsed light diode (lambda = 820 nm) and various chemicals. Lasers Surg. Med. 28, 227‒236.CrossRefGoogle Scholar
  21. 21.
    Polder K.D., Landau J.M., Vergilis-Kalner I.J., Goldberg L.H., Friedman P.M., Bruce S. 2011. Laser eradication of pigmented lesions: A review. Dermatol. Surg. 37, 572‒595.CrossRefGoogle Scholar
  22. 22.
    John H.E., Mahaffey P.J. 2014. Laser ablation and cryotherapy of melanoma metastases. J. Surg. Oncol. 109, 296‒300.CrossRefGoogle Scholar
  23. 23.
    Wu S., Zhou F., Wei Y., Chen W.R., Chen Q., Xing D. 2014. Cancer phototherapy via selective photoinactivation of respiratory chain oxidase to trigger a fatal superoxide anion burst. Antioxid. Redox Signal. 20, 733‒746.CrossRefGoogle Scholar
  24. 24.
    Passarella S., Karu T. 2014. Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J. Photochem. Photobiol. B. 140, 344‒358.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. V. Andreeva
    • 1
  • K. V. Zotov
    • 2
  • Y. Y. Yegorov
    • 1
  • O. F. Kandarakov
    • 3
  • V. I. Yusupov
    • 2
  • A. V. Belyavsky
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Photon Technologies, Federal Research Center of Crystallography and Photonics, Russian Academy of SciencesMoscow, TroitskRussia
  3. 3.Blokhin Russian Cancer Research Center, Ministry of Health of the Russian FederationMoscowRussia

Personalised recommendations