Advertisement

Molecular Biology

, Volume 52, Issue 5, pp 761–778 | Cite as

Functionally Significant Amino Acid Motifs of Heat Shock Proteins: Structural and Bioinformatics Analyses of Hsp60/Hsp10 in Five Classes of Chordata

  • T. S. Tikhomirova
  • O. V. Galzitskaya
BIOINFORMATICS

Abstract

The Hsp60/Hsp10 chaperonin system is one of the most studied systems of cell emergency responses to stresses associated with changes in environmental conditions. In this regard, we have performed a bioinformatics analysis of 164 amino acid sequences of Hsp60 and 125 amino acid sequences of Hsp10 in five classes of chordata. This enabled uncovering the relationship between the identity of the amino acid composition of Hsp60/Hsp10 and the evolutionary distance between classes of chordata. In the course of the study of the chaperonin crystal structure, potentially significant amino acid motifs responsible for the oligomerization of Hsp60 and Hsp10 monomers and the association/dissociation of the Hsp60 and Hsp10 hetero-dimer have been identified. In addition, we have established that Hsp60 and Hsp10 can form amyloid fibrils due to structural features through the alternative using of the oligomerization sites of monomers as well as association/dissociation sites.

Keywords:

chaperonin Hsp60/Hsp10 multiple alignment chordata oligomerization 

Notes

ACKNOWLEDGMENTS

The authors are grateful to all reviewers for their comments on this paper. The work was supported by the Russian Science Foundation, project no. 18-14-00321.

REFERENCES

  1. 1.
    Corrao S., Anzalone R., Lo Iacono M., Corsello T., Di Stefano A., D’Anna S.E., Balbi B., Carone M., Sala A., Corona D., Timperio A.M., Zolla L., Farina F., Conway de Macario E., et al. 2014. Hsp10 nuclear localization and changes in lung cells response to cigarette smoke suggest novel roles for this chaperonin. Open Biol. 4 (10), pii 140125. doi 10.1098/rsob.140125CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Khamis I., Chan D.W., Shirriff C.S., Campbell J.H., Heikkila J.J. 2016. Expression and localization of the Xenopus laevis small heat shock protein, HSPB6 (HSP20), in A6 kidney epithelial cells. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 201, 12–21.CrossRefGoogle Scholar
  3. 3.
    Soltys B.J., Gupta R.S. 1996. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp. Cell Res. 222 (1), 16–27.CrossRefPubMedGoogle Scholar
  4. 4.
    Baringou S., Rouault J.-D., Koken M., Hardivillier Y., Hurtado L., Leignel V. 2016. Diversity of cytosolic HSP70 heat shock protein from decapods and their phylogenetic placement within Arthropoda. Gene. 591 (1), 97–107. doi 10.1016/j.gene.2016.06.061CrossRefPubMedGoogle Scholar
  5. 5.
    Ebrahimi M., Mohammadi P., Daryadel A., Baharvand H. 2010. Assessment of heat shock protein (HSP60, HSP72, HSP90, and HSC70) expression in cultured limbal stem cells following air lifting. Mol. Vis. 16, 1680–1688.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Moon A., Bacchini P., Bertoni F., Olvi L.G., Santini-Arawo E., Kim Y.W., Park Y.-K. 2010). Expression of heat shock proteins in osteosarcomas. Pathology (Phila.). 42 (5), 421–425.Google Scholar
  7. 7.
    Cheng Y.F., Sun J.R., Chen H.B., Abdelnasir A., Tang S., Kemper N., Hartung J., Bao E.D. 2014. Association of Hsp60 expression with damage to rat myocardial cells exposed to heat stress in vivo and in vitro. Genet. Mol. Res. GMR. 13 (4), 9371–9381.CrossRefPubMedGoogle Scholar
  8. 8.
    Seveso D., Montano S., Strona G., Orlandi I., Galli P., Vai M. 2016. Hsp60 expression profiles in the reef-building coral Seriatopora caliendrum subjected to heat and cold shock regimes. Mar. Environ. Res. 119, 1–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Donovan M.R., Marr M.T. 2016. dFOXO activates large and small heat shock protein genes in response to oxidative stress to maintain proteostasis in Drosophila. J. Biol. Chem. 291 (36), 19 042–19 050. doi 10.1074/ jbc.M116.723049CrossRefGoogle Scholar
  10. 10.
    Singh M.P., Ravi Ram K., Mishra M., Shrivastava M., Saxena D.K., Chowdhuri D.K. 2010. Effects of co-exposure of benzene, toluene and xylene to Drosophila melanogaster: Alteration in hsp70, hsp60, hsp83, hsp26, ROS generation and oxidative stress markers. Chemosphere. 79 (5), 577–587.CrossRefPubMedGoogle Scholar
  11. 11.
    Azarnia Tehran D., Pirazzini M., Leka O., Mattarei A., Lista F., Binz T., Rossetto O., Montecucco C. 2016. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell. Microbiol. 19 (2). doi 10.1111/cmi.12647Google Scholar
  12. 12.
    Inda C., Bolaender A., Wang T., Gandu S. R., Koren Iii J. 2016. Stressing out Hsp90 in neurotoxic proteinopathies. Curr. Top. Med. Chem. 16 (25), 2829–2838.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhao P., Zhang K., Guo G., Sun X., Chai H., Zhang W., Xing M. 2016. Heat shock protein alteration in the gastrointestinal tract tissues of chickens exposed to arsenic trioxide. Biol. Trace Elem. Res. 170 (1), 224–236.CrossRefPubMedGoogle Scholar
  14. 14.
    Gammazza A.M., Bavisotto C.C., Barone R., de Macario E.C., Macario A.J.L. 2016. Alzheimer’s disease and molecular chaperones: Current knowledge and the future of chaperonotherapy. Curr. Pharm. Des. 22 (26), 4040–4049.CrossRefGoogle Scholar
  15. 15.
    Zhao C., Li H., Zhao X.-J., Liu Z.-X., Zhou P., Liu Y., Feng M.-J. 2016. Heat shock protein 60 affects behavioral improvement in a rat model of Parkinson’s disease grafted with human umbilical cord mesenchymal stem cell-derived dopaminergic-like neurons. Neurochem. Res. 41 (6), 1238–1249.CrossRefPubMedGoogle Scholar
  16. 16.
    Huckriede A., Heikema A., Sjollema K., Briones P., Agsteribbe E. 1995. Morphology of the mitochondria in heat shock protein 60 deficient fibroblasts from mitochondrial myopathy patients. Effects of stress conditions. Virchows Arch. Int. J. Pathol. 427 (2), 159–165.CrossRefGoogle Scholar
  17. 17.
    Sugimoto M., Furuoka H., Sugimoto Y. 2003. Deletion of one of the duplicated Hsp70 genes causes hereditary myopathy of diaphragmatic muscles in Holstein-Friesian cattle. Anim. Genet. 34 (3), 191–197.CrossRefPubMedGoogle Scholar
  18. 18.
    Nisemblat S., Yaniv O., Parnas A., Frolow F., Azem A. 2015. Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc. Natl. Acad. Sci. U. S. A. 112 (19), 6044–6049.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Okamoto T., Ishida R., Yamamoto H., Tanabe-Ishida M., Haga A., Takahashi H., Takahashi K., Goto D., Grave E., Itoh H. 2015. Functional structure and physiological functions of mammalian wild-type HSP60. Arch. Biochem. Biophys. 586, 10–19.CrossRefPubMedGoogle Scholar
  20. 20.
    Hayer-Hartl M., Bracher A., Hartl F.U. 2016. The GroEL-GroES chaperonin machine: A nano-cage for protein folding. Trends Biochem. Sci. 41 (1), 62–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Karlin S., Brocchieri L. 2000. Heat shock protein 60 sequence comparisons: Duplications, lateral transfer, and mitochondrial evolution. Proc. Natl. Acad. Sci. U. S. A. 97 (21), 11 348–11 353.CrossRefGoogle Scholar
  22. 22.
    Sameshima T., Ueno T., Iizuka R., Ishii N., Terada N., Okabe K., Funatsu T. 2008. Football- and bullet-shaped GroEL-GroES complexes coexist during the reaction cycle. J. Biol. Chem. 283 (35), 23 765–23 773.CrossRefGoogle Scholar
  23. 23.
    Mandal K., Foteinos G., Jahangiri M., Xu Q. 2005. Role of antiheat shock protein 60 autoantibodies in atherosclerosis. Lupus. 14 (9), 742–746.CrossRefPubMedGoogle Scholar
  24. 24.
    Grundtman C., Kreutmayer S.B., Almanzar G., Wick M.C., Wick G. 2011. Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31 (5), 960–968.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pfister G., Stroh C.M., Perschinka H., Kind M., Knoflach M., Hinterdorfer P., Wick G. 2005. Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J. Cell. Sci. 118 (8), 1587–1594.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhu H., Fang X., Zhang D., Wu W., Shao M., Wang L., Gu J. 2016. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis Int. J. Program. Cell Death. 21 (1), 96–109.CrossRefGoogle Scholar
  27. 27.
    Fruchart J.-C., Nierman M.C., Stroes E.S.G., Kastelein J.J.P., Duriez P. 2004. New risk factors for atherosclerosis and patient risk assessment. Circulation. 109 (23, Suppl. 1), III-15–III-19.CrossRefGoogle Scholar
  28. 28.
    Lanter B.B., Sauer K., Davies D.G. 2014. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio. 5 (3), e01206-14.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ameriso S.F., Fridman E.A., Leiguarda R.C., Sevlever G.E. 2001. Detection of Helicobacter pylori in human carotid atherosclerotic plaques. Stroke. 32 (2), 385–391.CrossRefPubMedGoogle Scholar
  30. 30.
    Izadi M., Fazel M., Sharubandi S.H., Saadat S.H., Farahani M.M., Nasseri M.H., Dabiri H., SafiAryan R., Esfahani A.A., Ahmadi A., Jonaidi Jafari N., Ranjbar R., Jamali-Moghaddam S.-R., Kazemi-Saleh D., Kalantar-Motamed M.H., Taheri S. 2012. Helicobacter species in the atherosclerotic plaques of patients with coronary artery disease. Cardiovasc. Pathol. 21 (4), 307–311.CrossRefPubMedGoogle Scholar
  31. 31.
    Belland R.J., Ouellette S.P., Gieffers J., Byrne G.I. 2004. Chlamydia pneumoniae and atherosclerosis. Cell. Microbiol. 6 (2), 117–127.CrossRefPubMedGoogle Scholar
  32. 32.
    Farsak B., Yildirir A., Akyön Y., Pinar A., Öç M., Böke E., Kes S., Tokgözoğlu L. 2000. Detection of Chlamydia pneumoniae and Helicobacter pylori DNA in human atherosclerotic plaques by PCR. J. Clin. Microbiol. 38 (12), 4408–4411.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Perschinka H., Wellenzohn B., Parson W., Zee R. van der, Willeit J., Kiechl S., Wick G. 2007. Identification of atherosclerosis-associated conformational heat shock protein 60 epitopes by phage display and structural alignment. Atherosclerosis. 194 (1), 79–87.CrossRefPubMedGoogle Scholar
  34. 34.
    Perschinka H., Mayr M., Millonig G., Mayerl C., Zee R. van der, Morrison S.G., Morrison R.P., Xu Q., Wick G. 2003. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 23 (6), 1060–1065.CrossRefPubMedGoogle Scholar
  35. 35.
    Wick G., Jakic B., Buszko M., Wick M.C., Grundtman C. 2014. The role of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol. 11 (9), 516–529.CrossRefPubMedGoogle Scholar
  36. 36.
    Afek A., George J., Gilburd B., Rauova L., Goldberg I., Kopolovic J., Harats D., Shoenfeld Y. 2000. Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J. Autoimmun. 14 (2), 115–121.CrossRefPubMedGoogle Scholar
  37. 37.
    Xu Q., Dietrich H., Steiner H.J., Gown A.M., Schoel B., Mikuz G., Kaufmann S.H., Wick G. 1992. Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler. Thromb. J. Vasc. Biol. 12 (7), 789–799.CrossRefGoogle Scholar
  38. 38.
    Mangione M.R., Vilasi S., Marino C., Librizzi F., Canale C., Spigolon D., Bucchieri F., Fucarino A., Passantino R., Cappello F., Bulone D., San Biagio P.L. 2016. Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim. Biophys. Acta. 1860 (11, Pt. A), 2474–2483. doi 10.1016/j.bbagen.2016.07.019Google Scholar
  39. 39.
    Ojha B., Fukui N., Hongo K., Mizobata T., Kawata Y. 2016. Suppression of amyloid fibrils using the GroEL apical domain. Sci. Rep. 6, 31 041.CrossRefGoogle Scholar
  40. 40.
    Padmadas N., Panda P.K., Durairaj S. 2016. Binding patterns associated Aß-HSP60 p458 conjugate to HLA-DR-DRB allele of human in Alzheimer’s disease: An in silico approach. Interdiscip. Sci. Comput. Life Sci. 10 (1), 93–104. doi 10.1007/s12539-016-0170-yCrossRefGoogle Scholar
  41. 41.
    Sievers F., Higgins D.G. 2014. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol. 1079, 105–116.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Manning J.R., Jefferson E.R., Barton G.J. 2008. The contrasting properties of conservation and correlated phylogeny in protein functional residue prediction. BMC Bioinformatics. 9, 51.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870–1874.CrossRefPubMedGoogle Scholar
  44. 44.
    Jones D.T., Taylor W.R., Thornton J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8 (3), 275–282.PubMedGoogle Scholar
  45. 45.
    Galzitskaya O.V., Garbuzynskiy S.O., Lobanov M.Y. 2006. FoldUnfold: Web server for the prediction of disordered regions in protein chain. Bioinformatics. 22 (23), 2948–2949.CrossRefPubMedGoogle Scholar
  46. 46.
    Galzitskaya O.V., Garbuzinskiy S.O., Lobanov M.Yu. 2006. Prediction of natively unfolded regions in protein chain. Mol. Biol. (Moscow). 40 (2), 298‒304.CrossRefGoogle Scholar
  47. 47.
    Lobanov M.Y., Galzitskaya O.V. 2011. The Ising model for prediction of disordered residues from protein sequence alone. Phys. Biol. 8 (3), 035004.CrossRefPubMedGoogle Scholar
  48. 48.
    Lobanov M.Y., Sokolovskiy I.V., Galzitskaya O.V. 2013. Is unstruct: Prediction of the residue status to be ordered or disordered in the protein chain by a method based on the Ising model. J. Biomol. Struct. Dyn. 31 (10), 1034–1043.CrossRefPubMedGoogle Scholar
  49. 49.
    Galzitskaya O.V., Garbuzynskiy S.O., Lobanov M.Y. 2006. Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput. Biol. 2 (12), e177.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Garbuzynskiy S.O., Lobanov M.Y., Galzitskaya O.V. 2010. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics. 26 (3), 326–332.CrossRefPubMedGoogle Scholar
  51. 51.
    Klochkov V.I. 2013. Metrologiya, standartizatsiya i sertifikatsiya (Metrology, Standardization, and Certification). Moscow: VLADOS.Google Scholar
  52. 52.
    Brocchieri L., Karlin S. 2000. Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci. 9 (3), 476–486.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Drozdetskiy A., Cole C., Procter J., Barton G.J. 2015. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 43 (W1), 389–394. doi 10.1093/nar/gkv332CrossRefGoogle Scholar
  54. 54.
    Skvortsov V.S., Alekseytchuk N.N., Khudyakov D.V., Reyes I.V.R. 2015. pIPredict: A computer tool for prediction of isoelectric points of peptides and proteins. Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem. 9 (3), 296–303.Google Scholar
  55. 55.
    Fukasawa Y., Tsuji J., Fu S.-C., Tomii K., Horton P., Imai K. 2015. MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol. Cell. Proteomics MCP. 14 (4), 1113–1126.CrossRefPubMedGoogle Scholar
  56. 56.
    Fenton W.A., Kashi Y., Furtak K., Horwich A.L. 1994. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 371 (6498), 614–619.CrossRefPubMedGoogle Scholar
  57. 57.
    Singh B., Patel H.V., Ridley R.G., Freeman K.B., Gupta R.S. 1990. Mitochondrial import of the human chaperonin (HSP60) protein. Biochem. Biophys. Res. Commun. 169 (2), 391–396.CrossRefPubMedGoogle Scholar
  58. 58.
    Voos W., Röttgers K. 2002). Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Biophys. Acta—Mol. Cell Res. 1592 (1), 51–62.Google Scholar
  59. 59.
    Dyson H.J., Wright P.E., Scheraga H.A. 2006. The role of hydrophobic interactions in initiation and propagation of protein folding. Proc. Natl. Acad. Sci. U. S. A. 103 (35), 13 057–13 061.CrossRefGoogle Scholar
  60. 60.
    Ryabova N.A., Marchenkov V.V., Marchenkova S.Y., Kotova N.V., Semisotnov G.V. 2013. Molecular chaperone GroEL/ES: Unfolding and refolding processes. Biochemistry (Moscow). 78 (13), 1405–1414.PubMedGoogle Scholar
  61. 61.
    Boisvert D.C., Wang J., Otwinowski Z., Horwich A.L., Sigler P.B. 1996. The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat. Struct. Biol. 3 (2), 170–177.CrossRefPubMedGoogle Scholar
  62. 62.
    Seale J.W., Horowitz P.M. 1995. The C-terminal sequence of the chaperonin GroES Is required for oligomerization. J. Biol. Chem. 270 (51), 30 268–30 270.CrossRefGoogle Scholar
  63. 63.
    Goh Y.C., Yap C.T., Huang B.H., Cronshaw A.D., Leung B.P., Lai P.B.S., Hart S.P., Dransfield I., Ross J.A. 2011. Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis. Cell. Mol. Life Sci. 68 (9), 1581–1592.CrossRefPubMedGoogle Scholar
  64. 64.
    Hayoun D., Kapp T., Edri-Brami M., Ventura T., Cohen M., Avidan A., Lichtenstein R.G. 2012. HSP60 is transported through the secretory pathway of 3‑MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS J. 279 (12), 2083–2095.CrossRefPubMedGoogle Scholar
  65. 65.
    Blom N., Sicheritz-Pontén T., Gupta R., Gammeltoft S., Brunak S. 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 4 (6), 1633–1649.CrossRefPubMedGoogle Scholar
  66. 66.
    Chiti F., Dobson C.M. 2009. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 5 (1), 15–22.CrossRefPubMedGoogle Scholar
  67. 67.
    Rambaran R.N., Serpell L.C. 2008. Amyloid fibrils. Prion. 2 (3), 112–117.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chen J., Yagi H., Sormanni P., Vendruscolo M., Makabe K., Nakamura T., Goto Y., Kuwajima K. 2012. Fibrillogenic propensity of the GroEL apical domain: A Janus-faced minichaperone. FEBS Lett. 586 (8), 1120–1127.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Protein Research, Russian Academy of SciencesPushchinoRussia
  2. 2.Institute for Biological Instrumentation, Russian Academy of SciencesPushchinoRussia

Personalised recommendations