Molecular Biology

, Volume 52, Issue 5, pp 701–706 | Cite as

Expression of Stroma Components in the Lymph Nodes Affected by Prostate Cancer Metastases

  • M. Yu. Shkurnikov
  • D. V. Maltseva
  • E. N. Knyazev
  • B. Ya. Alekseev


The architecture of stroma is crucial for normal lymph node functioning, as well as for the systemic and local immune response. Data from previous studies in metastatic lymph nodes suggest that changes in the composition of extracellular matrix proteins may occur, not only around the lesion site, but throughout the lymph node stroma. In the present study, the extracellular matrix status was compared between the affected and metastasis-free lymph nodes in prostate cancer. It was found that the presence of tumor cells was associated with significant changes in the expression of genes encoding extracellular matrix components, including α4, β1 and γ1 laminin chains, osteonectin, and collagen, as well as with decrease in the expression of lymphatic endothelial cell biomarkers LYVE1 and NRP2. This result suggests that the normal stromal architecture is significantly disrupted in metastatic lymph nodes and may indicate the development of immune tolerance to the tumor cells.


lymphogenic metastasis lymph node prostate cancer α4 laminin chain LAMA4 LAMB1 LAMC1 laminin 411 (laminin-8) SPARC chemokine 



This work was supported by the Russian Science Foundation (Agreements nos. 16-15-00290 and 17-14-01338). Analysis of laminin gene expression by real-time PCR was financed via Agreement no. 17-14-01338; the other experiments were supported via Agreement no. 16-15-00290.


  1. 1.
    Lambert A.W., Pattabiraman D.R., Weinberg R.A. 2017. Emerging biological principles of metastasis. Cell. 168, 670–691.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nathanson S.D., Shah R., Rosso K. 2015. Sentinel lymph node metastases in cancer: Causes, detection and their role in disease progression. Semin. Cell Dev. Biol. 38, 106–116.CrossRefPubMedGoogle Scholar
  3. 3.
    Karaman S., Detmar M. 2014. Mechanisms of lymphatic metastasis. J. Clin. Invest. 124, 922–928.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sano D., Myers J.N. 2007. Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev. 26, 645–662.CrossRefPubMedGoogle Scholar
  5. 5.
    Fennewald S.M., Kantara C., Sastry S.K., Resto V.A. 2012. Laminin interactions with head and neck cancer cells under low fluid shear conditions lead to integrin activation and binding. J. Biol. Chem. 287, 21 058–21 066.CrossRefGoogle Scholar
  6. 6.
    Stacker S.A., Williams S.P., Karnezis T., Shayan R., Fox S.B., Achen M.G. 2014. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer. 14, 159–172.CrossRefPubMedGoogle Scholar
  7. 7.
    Shen H., Wang X., Shao Z., Liu K., Xia X.Y., Zhang H.Z., Song K., Song Y., Shang Z.J. 2014. Alterations of high endothelial venules in primary and metastatic tumors are correlated with lymph node metastasis of oral and pharyngeal carcinoma. Cancer Biol. Ther. 15, 342–349.CrossRefPubMedGoogle Scholar
  8. 8.
    Royston D., Jackson D.G. 2009. Mechanisms of lymphatic metastasis in human colorectal adenocarcinoma. J. Pathol. 217, 608–619.CrossRefPubMedGoogle Scholar
  9. 9.
    Syn N., Wang L., Sethi G., Thiery J.-P., Goh B.-C. 2016. Exosome-mediated metastasis: From epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol. Sci. 37, 606–17.CrossRefPubMedGoogle Scholar
  10. 10.
    Peinado H., Zhang H., Matei I.R., Costa-Silva B., Hoshino A., Rodrigues G., Psaila B., Kaplan R.N., Bromberg J.F., Kang Y., Bissell M.J., Cox T.R., Giaccia A.J., Erler J.T., Hiratsuka S., et al. 2017. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer. 17, 302–317.CrossRefPubMedGoogle Scholar
  11. 11.
    Chikina A.S., Alexandrova A.Y. 2014. The cellular mechanisms and regulation of metastasis formation. Mol. Biol. (Moscow). 48, 165–180.CrossRefGoogle Scholar
  12. 12.
    Kobayashi Y., Nakajima T., Saku T. 1995. Loss of basement membranes in the invading front of O-1N, hamster squamous cell carcinoma with high potential of lymph node metastasis: An immunohistochemical study for laminin and type IV collagen. Pathol. Int. 45, 327–334.CrossRefPubMedGoogle Scholar
  13. 13.
    Burtin P., Chavanel G., Foidart J.M., Andre J. 1983. Alterations of the basement membrane and connective tissue antigens in human metastatic lymph nodes. Int. J. Cancer. 31, 719–726.CrossRefPubMedGoogle Scholar
  14. 14.
    Kakkad S.M., Solaiyappan M., Argani P., Sukumar S., Jacobs L.K., Leibfritz D., Bhujwalla Z.M., Glunde K. 2012. Collagen I fiber density increases in lymph node positive breast cancers: Pilot study. J. Biomed. Opt. 17, 116 017.CrossRefGoogle Scholar
  15. 15.
    Rizwan A., Bulte C., Kalaichelvan A., Cheng M., Krishnamachary B., Bhujwalla Z.M., Jiang L., Glunde K. 2015. Metastatic breast cancer cells in lymph nodes increase nodal collagen density. Sci. Rep. 5, 10 002.CrossRefGoogle Scholar
  16. 16.
    Soudja S.M., Henri S., Mello M., Chasson L., Mas A., Wehbe M., Auphan-Anezin N., Leserman L., Van den Eynde B., Schmitt-Verhulst A.-M. 2011. Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells. PLoS One. 6, e22639.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shkurnikov M.Y., Zotikov A.A., Belyakov M.M., Nushko K.M., Fomicheva K.A., Knyazev E.N., Sane-vich M.R., Ivanovich V.V., Alekseev B.Y. 2017. Application of loop-mediated isothermal amplification of DNA for diagnosis of prostate cancer micrometastases in the lymph nodes. Onkourologiya. 13, 63–66 (in Russ.).Google Scholar
  18. 18.
    Oliveira-Ferrer L., Rößler K., Haustein V., Schröder C., Wicklein D., Maltseva D., Khaustova N., Samatov T., Tonevitsky A., Mahner S., Jänicke F., Schumacher U., Milde-Langosch K. 2014. c-FOS suppresses ovarian cancer progression by changing adhesion. Br. J. Cancer. 110, 753–763.CrossRefPubMedGoogle Scholar
  19. 19.
    Krainova N.A., Khaustova N.A., Makeeva D.S., Fedotov N.N., Gudim E.A., Ryabenko E.A., Shkurnikov M.U., Galatenko V.V., Sakharov D.A., Maltseva D.V. 2013. Evaluation of potential reference genes for qRT-PCR data normalization in HeLa cells. Appl. Biochem. Microbiol. 49, 743–749.CrossRefGoogle Scholar
  20. 20.
    Sakharov D.A., Maltseva D. V., Riabenko E.A., Shkurnikov M.U., Northoff H., Tonevitsky A.G., Grigoriev A.I. 2012. Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells. Eur. J. Appl. Physiol. 112, 963–972.CrossRefPubMedGoogle Scholar
  21. 21.
    Maltseva D. V., Krainova N.A., Khaustova N.A., Nikulin S. V., Tonevitskaya S.A., Poloznikov A.A. 2017. Biodistribution of viscumin after subcutaneous injection to mice and in vitro modeling of endoplasmic reticulum stress. Bull. Exp. Biol. Med. 163, 451–455.CrossRefPubMedGoogle Scholar
  22. 22.
    Maltseva D.V., Khaustova N.A., Fedotov N.N., Matveeva E.O., Lebedev A.E., Shkurnikov M.U., Galatenko V.V., Schumacher U., Tonevitsky A.G. 2013. High-throughput identification of reference genes for research and clinical RT-qPCR analysis of breast cancer samples. J. Clin. Bioinform. 3, 13. doi 10.1186/2043-9113-3-13CrossRefGoogle Scholar
  23. 23.
    Kubista M., Andrade J.M., Bengtsson M., Forootan A., Jonák J., Lind K., Sindelka R., Sjöback R., Sjögreen B., Strömbom L., Ståhlberg A., Zoric N. 2006. The real-time polymerase chain reaction. Mol. Aspects Med. 27, 95–125.CrossRefPubMedGoogle Scholar
  24. 24.
    Bollyky P.L., Wu R.P., Falk B.A., Lord J.D., Long S.A., Preisinger A., Teng B., Holt G.E., Standifer N.E., Braun K.R., Xie C.F., Samuels P.L., Vernon R.B., Gebe J.A., Wight T.N., Nepom G.T. 2011. ECM components guide IL-10 producing regulatory T-cell (TR1. induction from effector memory T-cell precursors. Proc. Natl. Acad. Sci. U. S. A. 108, 7938–7943.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Groom J.R., Richmond J., Murooka T.T., Sorensen E.W., Sung J.H., Bankert K., von Andrian U.H., Moon J.J., Mempel T.R., Luster A.D. 2012. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity. 37, 1091–1103.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Girard J.-P., Moussion C., Förster R. 2012. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762–773.CrossRefPubMedGoogle Scholar
  27. 27.
    Gasteiger G., Ataide M., Kastenmüller W. 2016. Lymph node: An organ for T-cell activation and pathogen defense. Immunol. Rev. 271, 200–220.CrossRefPubMedGoogle Scholar
  28. 28.
    Willard-Mack C.L. 2006. Normal structure, function, and histology of lymph nodes. Toxicol. Pathol. 34, 409–424.CrossRefPubMedGoogle Scholar
  29. 29.
    Stein J.V., Gonzalez S.F. 2017. Dynamic intravital imaging of cell-cell interactions in the lymph node. J. Allergy Clin. Immunol. 139, 12–20.CrossRefPubMedGoogle Scholar
  30. 30.
    Gorfu G., Virtanen I., Hukkanen M., Lehto V.-P., Rousselle P., Kenne E., Lindbom L., Kramer R., Tryggvason K., Patarroyo M. 2008. Laminin isoforms of lymph nodes and predominant role of 5-laminin(s) in adhesion and migration of blood lymphocytes. J. Leukoc. Biol. 84, 701–712.CrossRefPubMedGoogle Scholar
  31. 31.
    Sorokin L. 2010. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723.CrossRefPubMedGoogle Scholar
  32. 32.
    Geberhiwot T., Assefa D., Kortesmaa J., Ingerpuu S., Pedraza C., Wondimu Z., Charo J., Kiessling R., Virtanen I., Tryggvason K., Patarroyo M. 2001. Laminin-8 (alpha4beta1gamma1) is synthesized by lymphoid cells, promotes lymphocyte migration and costimulates T cell proliferation. J. Cell Sci. 114, 423–433.PubMedGoogle Scholar
  33. 33.
    Wondimu Z., Geberhiwot T., Ingerpuu S., Juronen E., Xie X., Lindbom L., Doi M., Kortesmaa J., Thyboll J., Tryggvason K., Fadeel B., Patarroyo M. 2004. An endothelial laminin isoform, laminin 8 (α4β1γ1), is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis. Blood. 104, 1859–1866.CrossRefPubMedGoogle Scholar
  34. 34.
    Song J., Zhang X., Buscher K., Wang Y., Wang H., Di Russo J., Li L., Lütke-Enking S., Zarbock A., Stadtmann A., Striewski P., Wirth B., Kuzmanov I., Wiendl H., Schulte D., et al. 2017. Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration. Cell Rep. 18, 1256–1269.CrossRefPubMedGoogle Scholar
  35. 35.
    Warren K.J., Iwami D., Harris D.G., Bromberg J.S., Burrell B.E. 2014. Laminins affect T cell trafficking and allograft fate. J. Clin. Invest. 124, 2204–2218.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Malhotra D., Fletcher A.L., Astarita J., Lukacs-Kornek V., Tayalia P., Gonzalez S.F., Elpek K.G., Chang S.K., Knoblich K., Hemler M.E., Brenner M.B., Carroll M.C., Mooney D.J., Turley S.J., Zhou Y., et al. 2012. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yeo K.P., Angeli V. 2017. Bidirectional crosstalk between lymphatic endothelial cell and T cell and its implications in tumor immunity. Front. Immunol. 8, 1–11.CrossRefGoogle Scholar
  38. 38.
    Ulvmar M.H., Mäkinen T. 2016. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc. Res. 111, 310–321.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Garrafa E., De Francesco M., Solaini L., Giulini S.M., Bonfanti C., Ministrini S., Caimi L., Tiberio G.A.M. 2015. Lymphatic endothelial cells derived from metastatic and non-metastatic lymph nodes of human colorectal cancer reveal phenotypic differences in culture. Lymphology. 48, 6–14.PubMedGoogle Scholar
  40. 40.
    Lund A.W., Duraes F. V, Hirosue S., Raghavan V.R., Nembrini C., Thomas S.N., Issa A., Hugues S., Swartz M.A. 2012. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1, 191–199.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. Yu. Shkurnikov
    • 1
  • D. V. Maltseva
    • 2
  • E. N. Knyazev
    • 2
  • B. Ya. Alekseev
    • 1
  1. 1.National Medical Radiological Research Center, Ministry of Health of the Russian FederationObninskRussia
  2. 2.Bioclinicum Research CenterMoscowRussia

Personalised recommendations