Molecular Biology

, Volume 52, Issue 5, pp 693–700 | Cite as

Hypermethylation of miR-107, miR-130b, miR-203a, miR-1258 Genes Associated with Ovarian Cancer Development and Metastasis

  • V. I. Loginov
  • A. M. Burdennyy
  • E. A. Filippova
  • I. V. Pronina
  • T. P. Kazubskaya
  • D. N. Kushlinsky
  • V. D. Ermilova
  • S. V. Rykov
  • D. S. Khodyrev
  • E. A. Braga


It is known that microRNAs (miRNAs) are able to dynamically regulate gene expression. At the same time, methylation can reduce expression of miRNA encoding genes and, therefore, reduce their inhibitory effects on mRNAs of target genes, including those of oncogenes, that promoting the development of tumors of different localization. The role of miRNA hypermethylation in the pathogenesis of ovarian cancer is not completely understood; so we conducted a search for new hypermethylated and potentially suppressor miRNA genes in ovarian tumors. Four new miRNA genes (MIR-107, MIR-130b, MIR-203a, MIR-1258) commonly hypermethylated (28‒52% ) in tumor tissues vs 4‒7% in paired histologically normal tissues, p < 0.01, were identified in a representative set of 54 ovarian cancer samples using methylation-specific PCR. It was shown that hypermethylation of MIR-130b, MIR-203a, and MIR-1258 genes is significantly (p ≤ 0.05) associated with metastasis of ovarian cancer. These results suggest the involvement of four miRNAs (miR-107, miR-130b, miR-203a, and miR-1258) and hypermethylation of their encoding genes in the pathogenesis of ovarian cancer.


microRNAs hypermethylation ovarian cancer metastasis 



This work was financially supported by the Russian Science Foundation (project no. 14-15-00654).


  1. 1.
    Jones P.A. 2012. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484‒492.CrossRefPubMedGoogle Scholar
  2. 2.
    Kunej T., Godnic I., Ferdin J., Horvat S., Dovc P., Calin G.A. 2011. Epigenetic regulation of microRNAs in cancer: An integrated review of literature. Mutat. Res. 717, 77‒84.CrossRefPubMedGoogle Scholar
  3. 3.
    Loginov V.I., Rykov S.V., Fridman M.V., Braga E.A. 2015. Methylation of miRNA genes and oncogenesis. Biochemistry (Moscow). 80, 145‒162.PubMedGoogle Scholar
  4. 4.
    Piletič K., Kunej T. 2016. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 90, 2405‒2419.CrossRefPubMedGoogle Scholar
  5. 5.
    Baylin S.B., Jones P.A. 2016. Epigenetic determinants of cancer, Cold Spring Harbor Perspect. Biol. 8 (9), a019505.CrossRefGoogle Scholar
  6. 6.
    Rykov S.V., Khodyrev D.S., Pronina I.V., Kazubskaya T.P., Loginov V.I., Braga E.A. 2013. Novel miRNA genes methylated in lung tumors. Russ. J. Genet. 49, 782‒786.CrossRefGoogle Scholar
  7. 7.
    Beresneva E.V., Rykov S.V., Khodyrev D.S., Pronina I.V., Ermilova V.D., Kazubskaya T.P., Braga E.A., Loginov V.I. 2013. Methylation profile of group of miRNA genes in clear cell renal cell carcinoma and their involvement in cancer progression. Russ. J. Genet. 49, 320‒329.CrossRefGoogle Scholar
  8. 8.
    Loginov V.I., Burdennyy A.M., Pronina I.V., Khoko-nova V.V., Kurevljov S.V., Kazubskaya T.P., Kushlinskii N.E., Braga E.A. 2016. Novel miRNA genes hypermethylated in breast cancer. Mol. Biol. (Moscow). 50, 705‒709.CrossRefGoogle Scholar
  9. 9.
    Koshiyama M., Matsumura N., Konishi I. 2017. Subtypes of ovarian cancer and ovarian cancer screening. Diagnostics (Basel). 7, pii: E12.Google Scholar
  10. 10.
    Kinose Y., Sawada K., Nakamura K., Kimura T. 2014. The role of microRNAs in ovarian cancer. Biomed. Res. Int. 2014, 249393.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Li X., Pan Q., Wan X., Mao Y., Lu W., Xie X., Cheng X. 2015. Methylation-associated Has-miR-9 deregulation in paclitaxel-resistant epithelial ovarian carcinoma. BMC Cancer. 15, 509.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schmid G., Notaro S., Reimer D., Abdel-Azim S., Duggan-Peer M., Holly J., Fiegl H., Rössler J., Wiedemair A., Concin N., Altevogt P., Marth C., Zeimet A.G. 2016. Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer. 16, 102.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Agustriawan D., Huang C.H., Sheu J.J., Lee S.C., Tsai J.J., Kurubanjerdjit N., Ng K.L. 2016. DNA methylation-regulated microRNA pathways in ovarian serous cystadenocarcinoma: A meta-analysis. Comput. Biol. Chem. Dec. 65, 154‒164.Google Scholar
  14. 14.
    Pronina I.V., Loginov V.I., Burdennyy A.M., Fridman M.V., Kazubskaya T.P., Dmitriev A.A., Braga E.A. 2016. Expression and DNA methylation alterations of seven cancer-associated 3p genes and their predicted regulator miRNAs (miR-129-2, miR-9-1) in breast and ovarian cancers. Gene. 576 (1, Pt. 3), 483‒491.CrossRefPubMedGoogle Scholar
  15. 15.
    Lee K.H., Lotterman C., Karikari C., Omura N., Feldmann G., Habbe N., Goggins M.G., Mendell J.T., Maitra A. 2009. Epigenetic silencing of microRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology. 9, 293‒301.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang P., Wu T., Zhou H., Jin Q., He G., Yu H., Xuan L., Wang X., Tian L., Sun Y., Liu M., Qu L. 2016. Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J. Exp. Clin. Cancer Res. 35, 22.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xia H., Li Y., Lv X. 2016. MicroRNA-107 inhibits tumor growth and metastasis by targeting the BDNF-mediated PI3K/AKT pathway in human non-small lung cancer. Int. J. Oncol. 49, 1325‒1333.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang J.J., Wang C.Y., Hua L., Yao K.H., Chen J.T., Hu J.H. 2015. MiR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. Int. J. Clin. Exp. Pathol. 8, 5168‒5174.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Zou C.D., Zhao W.M., Wang X.N., Li Q., Huang H., Cheng W.P., Jin J.F., Zhang H., Wu M.J., Tai S., Zou C.X.1, Gao X. 2016. MicroRNA-107: A novel promoter of tumor progression that targets the CPEB3/ EGFR axis in human hepatocellular carcinoma. Oncotarget. 7, 266‒378.PubMedGoogle Scholar
  20. 20.
    Zhao G., Guo Y., Chen Z., Wang Y., Yang C., Dudas A., Du Z., Liu W., Zou Y., Szabo E., Lee S.C., Sims M., Gu W., Tillmanns T., Pfeffer L.M., et al. 2015. MiR-203 functions as a tumor suppressor by inhibiting epithelial to mesenchymal transition in ovarian cancer. J. Cancer Sci. Ther. 7, 34‒43.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Xiaohong Z., Lichun F., Na X., Kejian Z., Xiaolan X., Shaosheng W. 2016. MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumour Biol. 37, 14 989‒14 997.CrossRefGoogle Scholar
  22. 22.
    Shao Y., Gu W., Ning Z., Song X., Pei H., Jiang J. 2017. Evaluating the prognostic value of microRNA-203 in solid tumors based on a meta-analysis and the cancer genome atlas (TCGA) datasets, Cell. Physiol. Biochem. 41, 1468‒1480.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang C., Cai J., Wang Q., Tang H., Cao J, Wu L., Wang Z. 2012. Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol. Oncol. 124, 325‒334.CrossRefPubMedGoogle Scholar
  24. 24.
    World Medical Association. 2013. Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Am. Med. Assoc. 310, 2191–2194.Google Scholar
  25. 25.
    Sobin L.H., Gospodarowicz M.K., Wittekind Ch. International Union against Cancer (UICC). 2010. TNM Classification of Malignant Tumours, 7th ed. Chichester, UK: Wiley-Blackwell. Scholar
  26. 26.
    Kurman R.J., Carcangiu M.L., Herrington C.S., Young R.H. 2014. World Health Organization Classification of Tumours of the Female Reproductive Organs, 4th ed. Lyon: IARC Press. wp-content/uploads/2017/07/WHO-Female.pdf.Google Scholar
  27. 27.
    Herman J.G., Graff J.R., Myohanen S., Nelkin B.D., Baylin S.B. 1996. Methylation-specific PCR: A novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. U. S. A. 93, 9821–9826.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Loginov V.I., Dmitriev A.A., Senchenko V.N., Pronina I.V., Khodyrev D.S., Kudryavtseva A.V., Krasnov G.S., Gerashchenko G.V., Chashchina L.I., Kazubskaya T.P., Kondratieva T.T., Lerman M.I., Angeloni D., Braga E.A., Kashuba V.I. 2015. Tumor suppressor function of the SEMA3B gene in human lung and renal cancers. PLoS One. 10, e0123369.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Göksülük D., Korkmaz S., Zararsiz G., Karaagaoglu A.E. 2016. EasyROC: An interactive Web-tool for ROC curve analysis using R language environment. The R J. 8, 213‒230.Google Scholar
  30. 30.
    Huang Y.W., Kuo C.T., Chen J.H., Goodfellow P.J., Huang T.H., Rader J.S., Uyar D.S. 2014. Hypermethylation of miR-203 in endometrial carcinomas. Gynecol. Oncol. 133, 340‒345.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Diao Y., Guo X., Jiang L., Wang G., Zhang C., Wan J., Jin Y., Wu Z. 2014. MiR-203, a tumor suppressor frequently down-regulated by promoter hypermethylation in rhabdomyosarcoma. J. Biol. Chem. 289, 529‒539.CrossRefPubMedGoogle Scholar
  32. 32.
    Hinshelwood R.A., Clark S.J. 2008. Breast cancer epigenetics: Normal human mammary epithelial cells as a model system. J. Mol. Med. 86, 1315‒1328.CrossRefPubMedGoogle Scholar
  33. 33.
    Laytragoon-Lewin N., Rutqvist L.E., Lewin F. 2013. DNA methylation in tumour and normal mucosal tissue of head and neck squamous cell carcinoma (HNSCC) patients: New diagnostic approaches and treatment. Med. Oncol. 30, 654.CrossRefPubMedGoogle Scholar
  34. 34.
    Danforth D.N., Jr. 2016. Genomic changes in normal breast tissue in women at normal risk or at high risk for breast cancer. Breast Cancer (Auckl.). 10, 109‒146.Google Scholar
  35. 35.
    Pal M.K., Jaiswar S.P., Dwivedi V.N., Tripathi A.K., Dwivedi A., Sankhwar P. 2015. MicroRNA: A new and promising potential biomarker for diagnosis and prognosis of ovarian cancer. Cancer Biol. Med. 12, 328‒341.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Vrba L., Munoz-Rodriguez J.L., Stampfer M.R., Futscher B.W. 2013. MiRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One. 8, e54398.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Paudel D., Zhou W., Ouyang Y., Dong S., Huang Q., Giri R., Wang J., Tong X. 2016. MicroRNA-130b functions as a tumor suppressor by regulating RUNX3 in epithelial ovarian cancer. Gene. 586, 48‒55.CrossRefPubMedGoogle Scholar
  38. 38.
    Liu H., Chen X., Gao W., Jiang G. 2012. The expression of heparanase and microRNA-1258 in human non-small cell lung cancer. Tumour Biol. 33, 1327‒1334.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang L., Sullivan P.S., Goodman J.C., Gunaratne P.H., Marchetti D. 2011. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res. 71, 645‒654.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tang D., Zhang Q., Zhao S., Wang J., Lu K., Song Y., Zhao L., Kang X., Wang J., Xu S., Tian L. 2013. The expression and clinical significance of microRNA-1258 and heparanase in human breast cancer. Clin. Biochem. 46, 926‒932.CrossRefPubMedGoogle Scholar
  41. 41.
    Hu M., Wang M., Lu H., Wang X., Fang X., Wang J., Ma C., Chen X., Xia H. 2016. Loss of miR-1258 contributes to carcinogenesis and progression of liver cancer through targeting CDC28 protein kinase regulatory subunit 1B. Oncotarget. 7, 43 419‒43 431.Google Scholar
  42. 42.
    Shi J., Chen P., Sun J., Song Y., Ma B., Gao P., Chen X., Wang Z. 2017. MicroRNA-1258: An invasion and metastasis regulator that targets heparanase in gastric cancer. Oncol. Lett. 13, 3739‒3745.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wittenberger T., Sleigh S., Reisel D., Zikan M., Wahl B., Alunni-Fabbroni M., Jones A., Evans I., Koch J., Paprotka T., Lempiäinen H., Rujan T., Rack B., Cibula D., Widschwendter M. 2014. DNA methylation markers for early detection of women’s cancer: Promise and challenges. Epigenomics. 6, 311‒327.CrossRefPubMedGoogle Scholar
  44. 44.
    Mahdian-Shakib A., Dorostkar R., Tat M., Hashemzadeh M.S., Saidi N. 2016. Differential role of microRNAs in prognosis, diagnosis, and therapy of ovarian cancer. Biomed. Pharmacother. 84, 592‒600.CrossRefPubMedGoogle Scholar
  45. 45.
    Wu X., Zhang Y. 2017. TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat. Rev. Genet. 18, 517‒534.CrossRefPubMedGoogle Scholar
  46. 46.
    Liu M.Y., DeNizio J.E., Schutsky E.K., Kohli R.M. 2016. The expanding scope and impact of epigenetic cytosine modifications. Curr. Opin. Chem. Biol. 33, 67‒73.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Thomson J.P., Meehan R.R. 2017. The application of genome-wide 5-hydroxymethylcytosine studies in cancer research. Epigenomics. 9, 77‒91.CrossRefPubMedGoogle Scholar
  48. 48.
    Torres-Ferreira J., Ramalho-Carvalho J., Gomez A., Menezes F.D., Freitas R., Oliveira J., Antunes L., Bento M.J., Esteller M., Henrique R., Jerónimo C. 2017. MiR-193b promoter methylation accurately detects prostate cancer in urine sediments and miR-34b/c or miR-129-2 promoter methylation define subsets of clinically aggressive tumors. Mol. Cancer. 16, 26.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. I. Loginov
    • 1
    • 2
  • A. M. Burdennyy
    • 1
  • E. A. Filippova
    • 1
  • I. V. Pronina
    • 1
  • T. P. Kazubskaya
    • 3
  • D. N. Kushlinsky
    • 3
  • V. D. Ermilova
    • 3
  • S. V. Rykov
    • 4
  • D. S. Khodyrev
    • 4
    • 5
  • E. A. Braga
    • 1
    • 2
  1. 1.Institute of General Pathology and PathophysiologyMoscowaRussia
  2. 2.Research Center of Medical GeneticsMoscowRussia
  3. 3.Blokhin Russian Cancer Research CenterMoscowRussia
  4. 4.State Research Institute for Genetics and Selection of Industrial Microorganisms, Kurchatov Institute National Research CenterMoscowRussia
  5. 5.Federal Research Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Biomedical Agency of RussiaMoscowRussia

Personalised recommendations