Advertisement

Molecular Biology

, Volume 52, Issue 5, pp 732–748 | Cite as

Use of β Radiation to Localize the Binding Sites of Mercury Ions and Platinum-Containing Ligand in DNA

  • S. L. Grokhovsky
STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • 21 Downloads

Abstract

Composite sequence-specific ligands with DNA-damaging groups may dramatically increase the efficacy of radiotherapy. The most promising damage sensitizers are the atoms of heavy elements, in which electrons are emitted from upper orbitals and a multiply charged positive ion forms when an electron is kicked out from lower orbitals. The biophysical mechanisms of DNA damage produced by these sensitizers are far from fully understood. In this work, high-performance polyacrylamide gel electrophoresis (PAGE) in denaturing gel was used to investigate the nature of DNA cleavage on exposure to β radiation for complexes of heavy atom-containing ligands with DNA restriction fragments. It was demonstrated for the first time that DNA in complexes with Pt-bis-netropsin or mercury salts is cleaved in the vicinity of the heavy atom in the presence of radioactive isotopes emitting β particles of different energies. In the presence of 1M glycerol, the cleavage of the DNA sugar-phosphate backbone was almost entirely due to a neutralization of the multiply charged Auger ion and was not associated with the Auger electron electron-beam radiolysis. Based on the observations, a relatively simple technique was proposed for precise localization of binding sites for various DNA ligands containing a heavy atom. Analysis of the end groups at the cleavage point and the nature of damage to the complementary DNA chain made it possible to speculate about the mechanisms of direct influence of irradiation on a heavy atom.

Keywords:

DNA cleavage atom ionization by β radiation Auger effect 

Notes

ACKNOWLEDGMENTS

This work was supported by the Program of Basic Research at Russian Academies of Sciences from 2013 to 2020 (project no. 01201363818) and the Program for molecular and cell biology of the Presidium of the Russian Academy of Sciences.

REFERENCES

  1. 1.
    Gursky G.V., Zasedatelev A.S., Zhuze A.L., Khorlin A.A., Grokhovsky S.L., Streltsov S.A., Surovaya A.N., Nikitin S.M., Krylov A.S., Retchinsky V.O., Mikhailov M.V., Beabealashvili R.S., Gottich B.P. 1983. Synthetic sequence-specific ligands. Cold Spring Harb. Symp. Quant. Biol. 47, 367−378.CrossRefPubMedGoogle Scholar
  2. 2.
    Zimmer C., Wähnert U. 1986. Nonintercalating DNA-binding ligands: Specificity of the interaction and their use as tools in biophysical, biochemical and biological investigations of the genetic material. Progr. Biophys. Mol. Biol. 47, 31−112.CrossRefGoogle Scholar
  3. 3.
    Surovaya A.N., Grokhovsky S.L., Bazhulina N.P., Gursky G.V. 2008. DNA-binding activity of bis-netropsin containing a cis-diaminoplatinum group between two netropsin fragments. Biophysics (Moscow). 53, 344–351.CrossRefGoogle Scholar
  4. 4.
    Waring M.J., Neidle, S. 2006. Sequence-Specific DNA Binding Agents. RSC Biomolecular Sciences, vol. 6. London: RSC Publishing.CrossRefGoogle Scholar
  5. 5.
    Blackledge M. S., Melander C. 2013. Programmable DNA-binding small molecules. Bioorg. Med. Chem. 21, 6101−6114.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Taniguchi J., Pandian G.N., Hidaka T., Hashiya K., Bando T., Kim K.K., Sugiyama H. 2017. A synthetic DNA-binding inhibitor of SOX2 guides human induced pluripotent stem cells to differentiate into mesoderm. Nucleic Acids Res. 45, 9219−9228.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kim Y. G., Cha J., Chandrasegaran S. 1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. U. S. A. 93, 1156−1160.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sanjana N.E., Cong L., Zhou Y., Cunniff M.M., Feng G., Zhang F. 2012. A transcription activator-like effector toolbox for genome engineering. Nat. Protoc. 7, 171−192.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Platzman R.L. 1952. In: Symposium on Radiobiology. Ed. Nickson J.J. New York: Wiley, 95−115.Google Scholar
  10. 10.
    Feinendegen L.E. 1975. Biological damage from the Auger effect, possible benefits. Radiat. Environ. Biophys. 12, 85−99.CrossRefPubMedGoogle Scholar
  11. 11.
    Portugal J., Barceló F. 2016. Noncovalent binding to DNA: Still a target in developing anticancer agents. Curr. Med. Chem. 23, 4108−4134.CrossRefPubMedGoogle Scholar
  12. 12.
    Martin R.F., Feinendegen L.E. 2016. The quest to exploit the Auger effect in cancer radiotherapy: A reflective review. Int. J. Rad. Biol. 92, 617−632.CrossRefPubMedGoogle Scholar
  13. 13.
    Grokhovsky S. L., Zubarev V. E. 1990. Specific cleavage of double-stranded DNA caused by X-ray ionization of the platinum atom. Dokl. Akad. Nauk SSSR. 313, 1500−1504.Google Scholar
  14. 14.
    Grokhovsky S.L., Zubarev V.E. 1991. Sequence-specific cleavage of double-stranded DNA caused by X-ray ionization of the platinum atom in the Pt-bis-netropsin‒DNA complex. Nucleic Acids Res. 19, 257−264.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Grokhovsky S.L., Nikolaev V.A., Zubarev V.E., Suro-vaia A.N., Zhuze A.L., Chernov B.K., Sidorova N., Zasedatelev A.S. and Gursky G.V., 1992. Specific DNA cleavage by an analog of netropsin containing a copper(II) chelating peptide Gly-Gly-His. Mol. Biol. (Moscow). 26, 1274−1297.Google Scholar
  16. 16.
    Nikolaev V.A., Surovaya A.N., Sidorova Grokhovsky S.L., Zasedatelev A.S., Gursky G.V., Zhuze A.L. 1993. DNA-base-pair sequence-specific ligands: 10. Synthesis and binding to DNA of netropsin analogs containing a copper-chelating peptide. Mol. Biol. (Moscow). 27, 117−128.Google Scholar
  17. 17.
    Grokhovsky S.L., Gottikh B.P., Zhuze A.L. 1992. DNA base pair sequence specific ligands: 9. Synthesis of distamycin A and netropsin analogues containing a sarcolysin residue or a platinum(II) atom. Bioorg. Khim. 18, 313−324.Google Scholar
  18. 18.
    Sevilla M. D., Becker D., Kumar A., Adhikary A. 2016. Gamma and ion-beam irradiation of DNA: Free radical mechanisms, electron effects, and radiation chemical track structure. Rad. Phys. Chem. 128, 60−74.CrossRefGoogle Scholar
  19. 19.
    Yokoya A., Ito T. 2017. Photon-induced Auger effect in biological systems: A review. Int. J. Rad. Biol. 93, 743−756.CrossRefPubMedGoogle Scholar
  20. 20.
    Halpern A., Stocklin G. 1977. Chemical and biological consequences of beta-decay. Rad. Environ. Biophys. 14, 257–274.CrossRefGoogle Scholar
  21. 21.
    Alloni D., Cutaia C., Mariotti L., Friedlandd W., Ottolenghi A. 2014. Modeling dose deposition and DNA damage due to low-energy beta-emitters. Radiat. Res. 182, 322–330.CrossRefPubMedGoogle Scholar
  22. 22.
    Grokhovsky S., Il’icheva I., Nechipurenko D., Golovkin M., Taranov G., Panchenko L., Polozov R., Nechipurenko Y. 2012. Quantitative analysis of electrophoresis data: Application to sequence-specific ultrasonic cleavage of DNA. In: Gel Electrophoresis-Principles and Basics. London: InTech, pp. 218–238. doi 10.5772/2205Google Scholar
  23. 23.
    Grokhovsky S.L., Ilicheva I.A., Nechipurenko D.Yu., Golovkin M.V., Panchenko L.A., Polozov R.V., Nechipurenko Y.D. 2011. Sequence-specific ultrasonic cleavage of DNA. Biophys. J. 100, 117−125.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grokhovsky S.L., Surovaya A.N., Sidorova N.Ju., Gursky G.V. 1989. Synthesis of nonlinear sequence-specific DNA binding peptide with specificity determinants similar to those of 434 Cro repressor. Mol. Biol. (Moscow). 23, 1558−1580.Google Scholar
  25. 25.
    Grokhovsky S.L. 2006. Specificity of DNA cleavage by ultrasound. Mol. Biol. (Moscow). 40, 276–283.CrossRefGoogle Scholar
  26. 26.
    Das R., Laederach A., Pearlman S.M., Herschlag D., Altman R.B. 2005. SAFA: Semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA. 11, 344−354.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nechipurenko Yu.D., Golovkin M.V., Nechipurenko D.Yu., Il’icheva I.N., Panchenko L.A., Polozov R.V., Grokhovsky S.L., Gursky G.V. 2008. Quantitative methods for analysis of DNA cleavage by ultrasound. Mathematics, Computer, Education: Proc. 15th Int. Conf. Izhevsk, vol. 3, pp. 26–35.Google Scholar
  28. 28.
    Tate W.P., Petersen G.B. 1975. Stability of pyrimidine oligodeoxyribonucleotides released during degradation of deoxyribonucleic acid with formic acid–diphenylamine reagent. Biochem. J. 147, 439–445.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tullius T.D. 1989. Physical studies of protein-DNA complexes by footprinting. Ann. Rev. Biophys. Biophys. Chem. 18, 213−237.CrossRefGoogle Scholar
  30. 30.
    Balasubramanian B., Pogozelski W.K., Tullius T.D. 1998. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. U. S. A. 95, 9738−9743.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pogozelski W.K., Tullius T.D. 1998. Oxidative strand scission of nucleic acids: Routes initiated by hydrogen abstraction from the sugar moiety. Chem. Rev. 98, 1089−1108.CrossRefPubMedGoogle Scholar
  32. 32.
    Purkayastha S., Milligan J.R., Bernhard W.A. 2005. Correlation of free radical yields with strand break yields produced in plasmid DNA by the direct effect of ionizing radiation. J. Phys. Chem. B. 109, 16 967−16 973.CrossRefGoogle Scholar
  33. 33.
    Chan W., Chen B., Wang L., Taghizadeh K., Demott M.S., Dedon P.C. 2010. Quantification of the 2-deoxyribonolactone and nucleoside 5′-aldehyde products of 2‑deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: Differential effects of γ-radiation and Fe2+–EDTA. J. Am. Chem. Soc. 132, 6145−6153.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schroeder G.K., Lad C., Wyman P., Williams N.H., Wolfenden R. 2006. The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc. Natl. Acad. Sci. U. S. A. 103, 4052–4055.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    von Sonntag C. 2006. Free-Radical-Induced DNA Damage and Its Repair. Berlin: Springer.CrossRefGoogle Scholar
  36. 36.
    Franchet-Beuzit J., Spotheim-Maurizot M., Sabattier R., Blazy-Baudras B., Charlier M. 1993. Radiolytic footprinting: Beta rays, gamma photons, and fast neutrons probe DNA–protein interactions. Biochemistry. 32, 2104−2110.CrossRefPubMedGoogle Scholar
  37. 37.
    Grokhovsky S.L., Il’icheva I.A., Nechipurenko D.Yu., Panchenko L.A., Polozov R.V., Nechipurenko Yu.D. 2008. Ultrasonic cleavage of DNA: Quantitative analysis of sequence specificity. Biophysics (Moscow), 53, 250–252.CrossRefGoogle Scholar
  38. 38.
    Halpern A. 1982. In: Uses of Synchrotron Radiation in Biology. Ed. Stuhrmann H.B. London: Academic, pp. 255–283.Google Scholar
  39. 39.
    Halpern A., Stocklin G. 1977. Chemical and biological consequences of beta-decay. Radiat. Environ. Biophys. 14, 257−274.CrossRefPubMedGoogle Scholar
  40. 40.
    Martin R.F., Pardee M. 1985. Preparation of carrier free [125I] iodoHoechst 33258. Int. J. Appl. Radiat. Isot. 36, 745−747.CrossRefPubMedGoogle Scholar
  41. 41.
    Blagoi Yu.P., Galkin V.L., Gladchenko G.O., Kornilova S.V., Sorokin V.A., Schkorbatov A.G. 1991. Metal Complexes of Nucleic Acids in Solutions. Kiev: Naukova Dumka.Google Scholar
  42. 42.
    Kharatishvili M.G., Esipova N.G., Zhuze A.L., Grokhovskii S.L., Andronikashvili E.L. 1985. Formation of the left-handed helix during simultaneous treatment of poly[d(GC)] with bis-netropsin and Zn(II) ions. Biophysics (Moscow) 30, 701−703.Google Scholar
  43. 43.
    Leonarski F., D’Ascenzo L., Auffinger P. 2016. Mg2+ ions: Do they bind to nucleobase nitrogens? Nucleic Acids Res. 45. 987−1004.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hadjiliadis N.D., Sletten E. (Eds.). 2009. Metal Complex–DNA Interactions. Chichester, UK: Wiley.Google Scholar
  45. 45.
    Gruenwedel D.W., Cruikshank M.K. 1989. Mercury-induced transitions between right-handed and putative left-handed forms of poly[d(AT)•d(AT)] and poly[d(GC)•d[(GC)]. Nucleic Acids Res. 17, 9075–9086.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Grokhovsky S.L., Il’icheva I.A., Panchenko L.A., Golovkin M.V., Polozov R.V., Nechipurenko D.Y. 2013. Ultrasonic cleavage of DNA in complexes with Ag (I), Cu (II), Hg (II). Biophysics (Moscow). 58, 27−36.CrossRefGoogle Scholar
  47. 47.
    Gruenwedel D.W., Cruikshank M.K. 1990. Mercury-induced DNA polymorphism: Probing the conformation of mercury(II)-DNA via staphylococcal nuclease digestion and circular dichroism measurements. Biochemistry. 29, 2110−2116.CrossRefPubMedGoogle Scholar
  48. 48.
    Swasey S.M., Leal L.E., Lopez-Acevedo O., Pavlovich J., Gwinn E.G. 2015. Silver(I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson–Crick constraints. Sci. Rep. 5, 10 163.CrossRefGoogle Scholar
  49. 49.
    Dairaku T., Furuita K., Sato H., Šebera J., Nakashima K., Ono A., Sychrovský V., Kojima C., Tanaka Y. 2016. Hg(II)/Ag(I)-mediated base pairs and their NMR spectroscopic studies. Inorg. Chim. Acta. 452, 34−42.CrossRefGoogle Scholar
  50. 50.
    Liu H., Cai C., Haruehanroengra P., Yao Q., Chen Y., Yang C., Luo Q., Wu B., Li J., Ma J. Sheng J. 2017. Flexibility and stabilization of Hg(II)-mediated C:T and T:T base pairs in DNA duplex. Nucleic Acids Res. 45, 2910−2918.PubMedGoogle Scholar
  51. 51.
    Ding W., Xu M., Zhu H., Liang H. 2013. Mechanism of the hairpin folding transformation of thymine-cytosine-rich oligonucleotides induced by Hg(II) and Ag(I) ions. Eur. Phys. J. E. 36, 1−8.CrossRefGoogle Scholar
  52. 52.
    Stepanenko V.F., Yaskova E.K., Belukha I.G., Petriev V.M., Skvortsov V.G., Kolyzhenkov T.V., Petukhov A.D., Dubov D.V. 2015. The calculation of internal irradiation of nano-, micro- and macro-biostructures with electrons, beta particles and quantum radiation of different energy for the development and analysis of new radiopharmaceuticals in nuclear medicine. Radiatsiya i Risk. 24, 35−60.Google Scholar
  53. 53.
    Lee B.Q., Kibédi T., Stuchbery A.E., Robertson K.A. 2012. Atomic radiations in the decay of medical radioisotopes: A physics perspective. Comp. Math. Methods Med. 2012, ID 651475.Google Scholar
  54. 54.
    Itala E., Kooser K., Rachlew E., Levola H., Ha D.T., Kukk E. 2015. Gas-phase study on uridine: Conformation and X-ray photofragmentation. J. Chem. Phys. 142, 194 303.CrossRefGoogle Scholar
  55. 55.
    McBride T.J., Preston B.D., Loeb L.A. 1991. Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry. 30, 207−213.CrossRefPubMedGoogle Scholar
  56. 56.
    Lobachevsky P., Clark G.R., Pytel P.D., Leung B., Skene C., Andrau L., White J.M., Karagiannis T., Cullinane C., Lee B.Q., Stuchbery A. 2016. Strand breakage by decay of DNA-bound 124I provides a basis for combined PET imaging and Auger endoradiotherapy. Int. J. Radiat. Biol. 92, 686–697.CrossRefPubMedGoogle Scholar
  57. 57.
    Balagurumoorthy P., Xu X., Wang K., Adelstein S.J., Kassis A.I. 2012. Effect of distance between decaying 125I and DNA on Auger-electron induced double-strand break yield. Int. J. Radiat. Biol. 88, 998–1008.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jahnke T. 2015. Interatomic and intermolecular Coulombic decay: The coming of age story. J. Phys. B: At. Mol. Opt. Phys. 48, 082001.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia

Personalised recommendations