Molecular Biology

, Volume 52, Issue 5, pp 660–667 | Cite as

De novo Assembly and Analysis of Sumac (Toxicodendron vernicifluum (Stokes) F.A. Barkley) Transcriptomes Provides Insights into the Biosynthesis of Urushiol

  • G.-Q. Bai
  • Y. Jia
  • W.-M. Li
  • H. Chen
  • B. Li
  • S.-F. Li


Sumac is universally known for its abundance of raw lacquer. Toxicodendron vernicifluum (Stokes) F.A. Barkley is one of the widely distributed native sumac cultivars. To accelerate sumac breeding for more prolific, high-quality, and robust cultivars, it is essential to explore its lacquer metabolism. However, transcriptomic and genomic data available for sumac are still limited. In this study, we generated the transcriptomic profiles of triploid Toxicodendron vernicifluum CV. Dahongpao (Dahongpao) and diploid T. vernicifluum and Toxicodendron vernicifluum CV. Huoyanzi (Huoyanzi), with 87 856 unigenes. About 53% of these unigenes were annotated using Nr, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups (COG) and Gene Ontology (GO). We identified nine differentially expressed candidate genes associated with type III polyketide synthase formation, which is the first step in urushiol biosynthesis. Additionally, a number of simple sequence repeats (EST–SSRs) were identified in T. vernicifluum for further molecular marker-assisted breeding. This study is the first report of Toxicodendron species transcriptome.


differential expression functional annotation Illumina sequencing Toxicodendron vernicifluum transcriptome 



We are grateful to Dr. Liyu Chen (College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China) for the insightful comments and assistance. This work was financially supported by National Science and technology support program of China titled ‘‘Research and Application of Germplasm Characteristics of Rhus Species’’ (2013BAD01B06-7).


  1. 1.
    Zhao M., Liu C., Zheng G., Wei S., Hu Z. 2013. Comparative studies of bark structure, lacquer yield and urushiol content of cultivated Toxicodendron vernicifluum varieties. New Zeal. J. Bot. 51, 13–21.CrossRefGoogle Scholar
  2. 2.
    Norman J. 2006. Lacquer: Technology and Conservation: A comprehensive guide to the technology and conservation of Asian and European lacquer. Stud. Conserv. 51 (2), 157–158. Scholar
  3. 3.
    Zhang F., Zhang W., Wei S. 2007. Study on Chinese lacquer tree resources and fined utilization. J. Chinese Lacquer. 26, 36–50, 60.Google Scholar
  4. 4.
    Zhao G., Hu Z. 1985. Studies on the ultrastructure of secondary phloem in the stem of Rhus verniciflua Stokes. Acta Bot. Boreal.-Occident. Sin. 5, 77–82.Google Scholar
  5. 5.
    Zhao G., Hu Z. 1990. Studies on the relation between synthesis of lacquer and submicrostructure of the tissue where laticiferous canal lies in Toxicodendron verniciflum. Sci. Silvae Sin. 26, 17–21.Google Scholar
  6. 6.
    Hatada K., Kitayama T., Nishiura T., Nishimoto A., Simonsick Jr. W.J., Vogl O. 1994. Structural analysis of the components of Chinese lacquer ‘Kuro urushi’. Macromol. Chem. Phys. 195, 1865–1870.CrossRefGoogle Scholar
  7. 7.
    Hong D.H., Han S.B., Lee C.W., Park S.H., Jeon Y.J., Kim M.J., Kwak S.S., Kim H.M. 1999. Cytotoxicity of urushiols isolated from sapof Korean lacquer tree (Rhus vernicifera Stokes). Arch. Pharm. Res. 22, 638–641.CrossRefPubMedGoogle Scholar
  8. 8.
    Weisberg A.J. 2014. Investigations into the molecular evolution of plant terpene, alkaloid, and urushiol biosynthetic enzymes. Doctor of Philosophy Dissertation, Blacksburg, VA: Virginia Polytechnic Institute and State University. Scholar
  9. 9.
    Metzker M.L. 2010. Sequencing technologies: The next generation. Nat. Rev. Genet. 11, 31–46.CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang Q., Wang F., Tan H.W., Li M.Y., Xu Z.S., Tan G.F., Xiong A.S. 2015. De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica. Mol. Genet. Genomics. 290, 671–683.CrossRefPubMedGoogle Scholar
  11. 11.
    Fu N., Wang Q., Shen H.L. 2013. De novo assembly, gene annotation and marker development using Illumina paired-end transcriptome sequences in celery (Apium graveolens L.). PLoS One, 8, e57686.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang J., Liu W., Han H., Song L., Bai L., Gao Z., Zhang Y., Yang X.M., Li X.Q., Gao A.N., Li L. 2015. De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics. 106, 129–136.CrossRefPubMedGoogle Scholar
  13. 13.
    Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pertea G., Huang X., Liang F., Antonescu V., Sultana R., Karamycheva S., Lee Y., White J., Cheung F., Parvizi B. 2003. TIGR Gene Indices Clustering Tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics. 19, 651–652.CrossRefPubMedGoogle Scholar
  15. 15.
    Iseli C., Jongeneel C.V., Bucher P. 1999. ESTScan: A program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 1999, 138–148.Google Scholar
  16. 16.
    Götz S., Garcaí-Gómez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., Conesa A. 2008. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ye J., Fang L., Zheng H.K., Zhang Y., Chen J., Zhang Z., Wang J., Li S., Li R., Bolund L., Wang J. 2006. WEGO: A web tool for plotting GO annotations. Nucleic Acids Res. 34, 293–297.CrossRefGoogle Scholar
  18. 18.
    Li B., Dewey C.N. 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12, 323.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Anders S. Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol. 11, R106.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thiel T., Michalek W., Varshney R.K., Graner A. 2003. Exploiting EST database for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 106, 411–422.CrossRefPubMedGoogle Scholar
  21. 21.
    Dewick P.M. 1997. Medicinal Natural Products: A Biosynthetic Approach. West Sussex, England: John Wiley & Sons Ltd.Google Scholar
  22. 22.
    Abe I., Watanabe T., Noguchi H. 2004. Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases. Phytochemistry, 65, 2447–2453.CrossRefPubMedGoogle Scholar
  23. 23.
    Matsuzawa M., Katsuyama Y., Funa N., Horinouchi S. 2010. Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa. Phytochemistry, 71, 1059–1067.CrossRefPubMedGoogle Scholar
  24. 24.
    Taura F., Tanaka S., Taguchi C., Fukamizu T., Tanaka H., Shoyama Y., Morimoto S. 2009. Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett. 583, 2061–2066.CrossRefPubMedGoogle Scholar
  25. 25.
    Mudalkar S., Golla R., Ghatty S., Reddy A.R. 2014. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol. Biol. 84, 159–171.CrossRefPubMedGoogle Scholar
  26. 26.
    Yang Y., Xu M., Luo Q., Wang J., Li H. 2014. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Gene. 534, 155–162.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu L., Zhang Y., Guo W., Xu X.J., Wang Q. 2014). De novo assembly and characterization of Sophora japonica transcriptome using RNA-seq. Biomed. Res. Int. 2014, 1–9.Google Scholar
  28. 28.
    Yang C.X., Zhang T., Xu M., Zhu P.L., Deng S.Y. 2016. Insights into biosynthetic genes involved in the secondary metabolism of Gardenia jasminoides Ellis using transcriptome sequencing. Biochem. Syst. Ecol. 67, 7–16.CrossRefGoogle Scholar
  29. 29.
    Zeng S., Xiao G., Guo J., Fei Z., Xu Y., Roe B. Wang, Y. 2010. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. et Zucc.) Maxim. BMC Genomics. 11, 94.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang J., Wu K., Zeng S., da Silva J.A.T., Zhao X., Tian C.E., Xia H.Q., Duan J. 2013. Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genomics. 14, 279.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li D., Deng Z., Qin B., Liu X., Men Z. 2012. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics. 13, 192.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wu H.B., Gong H., Liu P., He X.L., Luo S.B., Zheng X.M., Zhang C.Y., He X.M., Luo J. 2014. Large-scale development of EST-SSR markers in sponge gourd via transcriptome sequencing. Mol. Breed. 34, 1903–1915.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Institute of Botany of Shaanxi ProvinceXi’anChina
  2. 2.Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest UniversityXi’anChina

Personalised recommendations