Advertisement

Molecular Biology

, Volume 52, Issue 5, pp 779–785 | Cite as

Proteomic Profile of the Bacterium Sinorhizobium meliloti Depends on Its Life Form and Host Plant Species

  • K. S. Antonets
  • O. P. Onishchuk
  • O. N. Kurchak
  • K. V. Volkov
  • A. N. Lykholay
  • E. A. Andreeva
  • E. E. Andronov
  • A. G. Pinaev
  • N. A. Provorov
  • A. A. Nizhnikov
PROTEOMICS

Abstract—The importance of root nodule bacteria in biotechnology is determined by their distinctive feature: symbiotic nitrogen fixation resulting in the production of organic nitrogen-containing compounds. While interacting with host legume plants, the cells of these bacteria undergo global changes at all levels of expression of genetic information leading to the formation in root nodules of so-called bacteroids functioning as nitrogen fixation factories. The molecular mechanisms underlying plant-microbial symbiosis are actively investigated, and one of the most interesting and poorly studied aspects of this problem is the species-specificity of interaction between root nodule bacteria and host plants. In this work we have performed the proteomic analysis of the Sinorhizobium meliloti bacteroids isolated from two legume species: alfalfa (Medicago sativa L.) and yellow sweet clover (Melilotus officinalis L.). It has been shown that the S. meliloti bacteroids produce a lot of proteins (many of them associated with symbiosis) in a host-specific manner, i.e., only in certain host plant species. It has been demonstrated for the first time that the levels of expression in bacteroids of the genes encoding the ExoZ and MscL proteins responsible for the synthesis of surface lipopolysaccharides and formation of a large conductance mechanosensitive channel, respectively, depend on a host plant species that confirms the results of proteomic analysis. Overall, our data show that the regulation of bacteroid development by the host plant has species-specific features.

Keywords:

root nodule bacteria Sinorhizobium meliloti Medicago Melilotus bacteroid symbiotic nitrogen fixation mass spectrometry chromatography MALDI HPLC MscL ExoZ 

Notes

ACKNOWLEDGMENTS

The study was carried out with equipment of the Research Resource Center for Molecular and Cell Technologies, St. Petersburg State University, and the Collective Use Center for Genome Technologies, Proteomics, and Cell Biology, Federal State Budgetary Scientific Institution, All-Russia Research Institute of Agricultiral Microbiology.

The comparative proteomic analysis of the S. meliloti bacteroids was supported by the Russian Science Foundation, Grant no. 14-26-00094. The development of visualization tools for gene expression on circular replicons was supported by the Grant of the President of the Russian Federation, MK-3240.2017.4.

REFERENCES

  1. 1.
    Andrews M., Andrews M.E. 2017. Specificity in legume–rhizobia symbioses. Int. J. Mol. Sci. 18, e705.CrossRefPubMedGoogle Scholar
  2. 2.
    Wang D., Yang S., Tang F., Zhu H. 2012. Symbiosis specificity in the legume: Rhizobial mutualism. Cell. Microbiol. 14, 334–342.CrossRefPubMedGoogle Scholar
  3. 3.
    Gourion B., Berrabah F., Ratet P., Stacey G. 2015. Rhizobium–legume symbioses: The crucial role of plant immunity. Trends Plant Sci. 20, 186–194.CrossRefPubMedGoogle Scholar
  4. 4.
    Sprent J.I. 2009. Legume Nodulation: A Global Perspective. Ed. Sprent J.I. Chichester UK: Wiley-Blackwell.Google Scholar
  5. 5.
    Rose C.M., Venkateshwaran M., Volkening J.D., Grimsrud P.A., Maeda J., Bailey D.J., Park K., Howes-Podoll M., den Os D., Yeun L.H., Westphall M.S., Sussman M.R., Ané J.-M., Coon J.J. 2012. Rapid phosphoproteomic and transcriptomic changes in the rhizobia–legume symbiosis. Mol. Cell. Proteomics. 11, 724–744.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Marx H., Minogue C.E., Jayaraman D., Richards A.L., Kwiecien N.W., Siahpirani A.F., Rajasekar S., Maeda J., Garcia K., Del Valle-Echevarria A.R., Volkening J.D., Westphall M.S., Roy S., Sussman M.R., Ané J.-M., Coon J.J. 2016. A proteomic atlas of the legume Medicago truncatula and its nitrogen-fixing endosymbiont Sinorhizobium meliloti. Nat. Biotechnol. 34, 1198–1205.CrossRefPubMedGoogle Scholar
  7. 7.
    Oldroyd G.E.D., Murray J.D., Poole P.S., Downie J.A. 2011. The rules of engagement in the legume–rhizobial symbiosis. Annu. Rev. Genet. 45, 119–144.CrossRefPubMedGoogle Scholar
  8. 8.
    Debellé F., Maillet F., Vasse J., Rosenberg C., de Billy F., Truchet G., Dénarié J., Ausubel F.M. 1988. Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: Genetic basis of R. meliloti dominance. J. Bacteriol. 170, 5718–5727.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Spaink H.P., Weinman J., Djordjevic M.A., Wijffelman C.A., Okker R.J., Lugtenberg B.J. 1989. Genetic analysis and cellular localization of the Rhizobium host specificity-determining NodE protein. EMBO J. 8, 2811–2818.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McIver J., Djordjevic M.A., Weinman J.J., Bender G.L., Rolfe B.G. 1989. Extension of host range of Rhizobium leguminosarum bv. trifolii caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules. Mol. Plant Microbe Interact. 2, 97–106.CrossRefPubMedGoogle Scholar
  11. 11.
    Koch M., Delmotte N., Rehrauer H., Vorholt J.A., Pessi G., Hennecke H. 2010. Rhizobial adaptation to hosts, a new facet in the legume root–nodule symbiosis. Mol. Plant. Microbe. Interact. 23, 784–790.CrossRefPubMedGoogle Scholar
  12. 12.
    Ampe F., Kiss E., Sabourdy F., Batut J. 2003. Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol. 4, R15.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Becker A., Berges H., Krol E., Bruand C., Ruberg S., Capela D., Lauber E., Meilhoc E., Ampe F., de Bruijn F.J., Fourment J., Francez-Charlot A., Kahn D., Kuster H., Liebe C., et al. 2004. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol. Plant. Microbe Interact. 17, 292–303.CrossRefPubMedGoogle Scholar
  14. 14.
    Li Y., Tian C.F., Chen W.F., Wang L., Sui X.H., Chen W.X. 2013. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS One. 8, e0070531.Google Scholar
  15. 15.
    Larrainzar E., Wienkoop S. 2017. A proteomic view on the role of legume symbiotic interactions. Front. Plant Sci. 8, e1267.CrossRefGoogle Scholar
  16. 16.
    Rumyantseva M.L., Simarov B.V., Onishchuk O.P., Andronov E.E., Chizhevskaya E.P., Belova V.S., Kurchak O.N., Muntyan A.N., Rumyantseva T.B. 2011. Biologicheskoe raznoobrazie kluben’kovykh bakterii v ekosistemakh i agrotsenozakh. Teoreticheskie osnovy i metody (Biological Diversity of Rhizobia in Ecosystems and Agrocenoses: Theoretical Foundations and Methods). Rumyantseva M.L., Simarov B.V., Eds. St. Petersburg: VNIISKhM.Google Scholar
  17. 17.
    Vedam V., Kannenberg E., Datta A., Brown D., Haynes-Gann J.G., Sherrier D.J., Carlson R.W. 2006. The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. J. Bacteriol. 188, 2126–2133.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Antonets K.S., Volkov K.V., Maltseva A.L., Arshakian L.M., Galkin A.P., Nizhnikov A.A. 2016. Proteomic analysis of Escherichia coli protein fractions resistant to solubilization by ionic detergents. Biochemistry (Moscow). 81 (1), 34–46.PubMedGoogle Scholar
  19. 19.
    Rinaudi-Marron L.V., González J.E. 2013. Role of quorum sensing in the Sinorhizobium meliloti–alfalfa symbiosis. Mol. Microbial. Ecol. Rhizosphere. 1, 535–540.Google Scholar
  20. 20.
    Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25, 402–408.CrossRefPubMedGoogle Scholar
  21. 21.
    Blanca-Ordóñez H., Oliva-García J.J., Pérez-Mendoza D., Soto M.J., Olivares J., Sanjuán J., Nogales J. 2010. pSymA-dependent mobilization of the Sinorhizobium meliloti pSymB megaplasmid. J. Bacteriol. 192, 6309–6312.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mendrygal K.E., González J.E. 2000. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 182, 599–606.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lynch D., O’Brien J., Welch T., Clarke P., Cuív P.O., Crosa J.H., O’Connell M. 2001. Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J. Bacteriol. 183, 2576–2585.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Skorupska A., Janczarek M., Marczak M., Mazur A., Król J. 2006. Rhizobial exopolysaccharides: Genetic control and symbiotic functions. Microb. Cell Fact. 5, e7.CrossRefGoogle Scholar
  25. 25.
    Booth I.R. 2014. Bacterial mechanosensitive channels: Progress towards an understanding of their roles in cell physiology. Curr. Opin. Microbiol. 18, 16–22.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • K. S. Antonets
    • 1
    • 2
  • O. P. Onishchuk
    • 1
  • O. N. Kurchak
    • 1
  • K. V. Volkov
    • 2
  • A. N. Lykholay
    • 2
  • E. A. Andreeva
    • 2
  • E. E. Andronov
    • 1
    • 2
  • A. G. Pinaev
    • 1
  • N. A. Provorov
    • 1
  • A. A. Nizhnikov
    • 1
    • 2
  1. 1.All-Russia Research Institute of Agricultural MicrobiologyPushkinRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations