Advertisement

Molecular Biology

, Volume 52, Issue 5, pp 676–685 | Cite as

Methylation of the Reelin Gene Promoter in Peripheral Blood and Its Relationship with the Cognitive Function of Schizophrenia Patients

  • M. V. Alfimova
  • N. V. Kondratiev
  • A. K. Golov
  • V. E. Golimbet
GENOMICS. TRANSCRIPTOMICS
  • 22 Downloads

Abstract—There is a decrease in the expression of the reelin gene (RELN) in the brain of schizophrenia patients, which can underlie observed cognitive abnormalities. It is suggested that this decrease is caused by the hypermethylation of the RELN promoter. The aim of the study was to investigate methylation of the RELN promoter in the peripheral blood of schizophrenia patients and its association with their cognitive deficits. A modified SMRT-BS (single-molecule real-time bisulfite sequencing) was used. We determined the methylation rate of 170 CpG sites within a 1465 bp DNA region containing the entire CpG island in the RELN promoter in 51 schizophrenia patients and 52 healthy controls. All subjects completed a battery of neuropsychological tests. There were no DNA methylation changes associated with schizophrenia. Most CpGs sites were unmethylated in both groups. At the same time, there was a variability in the methylation level of different regions within the promoter. The methylation level in the area from –258 to –151 bp relative to RELN transcription start site was a significant predictor of the index of patients’ cognitive functioning if sex, age, smoking, education, and polymorphism rs1858815 had been considered. The positive correlation between the methylation rate in this region and cognitive index suggests that the hypomethylation of the RELN promoter could contribute to the development of cognitive deficits in schizophrenia.

Keywords:

DNA methylation RELN schizophrenia cognitive deficit 

Notes

REFERENCES

  1. 1.
    Harvey P.D., Green M.F., Bowie C., Loebel A. 2006. The dimensions of clinical and cognitive change in schizophrenia: Evidence for independence of improvements. Psychopharmacology. 187, 356‒363.CrossRefPubMedGoogle Scholar
  2. 2.
    Green M.F. 2016. Impact of cognitive and social cognitive impairment on functional outcomes in patients with schizophrenia. J. Clin. Psychiatry. 77 (Suppl. 2), 8–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Mark W., Toulopoulou T. 2016. Cognitive intermediate phenotype and genetic risk for psychosis. Curr. Opin. Neurobiol. 36, 23–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Folsom T.D., Fatemi S.H. 2013. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology. 68, 122–135.CrossRefPubMedGoogle Scholar
  5. 5.
    Guidotti A., Auta J., Davis J.M., Dong E., Gavin D.P., Grayson D.R., Sharma R.P., Smith R.C., Tueting P., Zhubi A. 2014. Toward the identification of peripheral epigenetic biomarkers of schizophrenia. J. Neurogenet. 28, 41–52.CrossRefPubMedGoogle Scholar
  6. 6.
    Guidotti A., Grayson D.R., Caruncho H.J. 2016. Epigenetic RELN dysfunction in schizophrenia and related neuropsychiatric disorders. Front. Cell. Neurosci. 10, 89. doi 10.3389/fncel.2016.00089CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Negrón-Oyarzo I., Lara-Vásquez A., Palacios-García I., Fuentealba P., Aboitiz F. 2016. Schizophrenia and reelin: A model based on prenatal stress to study epigenetics, brain development and behavior. Biol. Res. 49, 16. doi 10.1186/s40659-016-0076-5CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brosda J., Dietz F., Koch M. 2011. Impairment of cognitive performance after reelin knockdown in the medial prefrontal cortex of pubertal or adult rats. Neurobiol. Dis. 44, 239–247.CrossRefPubMedGoogle Scholar
  9. 9.
    Schroeder A., Buret L., Hill R.A., van den Buuse M. 2015. Gene–environment interaction of reelin and stress in cognitive behavior in mice: Implications for schizophrenia. Behav. Brain Res. 287, 304–314.CrossRefPubMedGoogle Scholar
  10. 10.
    Teixeira C.M., Martín E.D., Sahún I., Masachs N., Pujadas L., Corvelo A., Bosch C., Rossi D., Martinez A., Maldonado R., Dierssen M., Soriano E. 2011. Overexpression of Reelin prevents the manifestation of behavioral phenotypes related to schizophrenia and bipolar disorder. Neuropsychopharmacology. 36, 2395–2405.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wedenoja J., Loukola A., Tuulio-Henriksson A., Paunio T., Ekelund J., Silander K., VariloT., Heikkilä K., Suvisaari J., Partonen T., Lönnqvist J., Peltonen L. 2008. Replication of linkage on chromosome 7q22 and association of the regional Reelin gene with working memory in schizophrenia families. Mol. Psychiatry. 13, 673–684.CrossRefPubMedGoogle Scholar
  12. 12.
    Wedenoja J., Tuulio-Henriksson A., Suvisaari J., Loukola A., Paunio T., Partonen T., Varilo T., Lönnqvist J., Peltonen L. 2010. Replication of association between working memory and Reelin, a potential modifier gene in schizophrenia. Biol. Psychiatry. 67, 983–991.CrossRefPubMedGoogle Scholar
  13. 13.
    Verbrugghe P., Bouwer S., Wiltshire S., Carter K., Chandler D., Cooper M., Morar B., Razif M.F., Henders A., Badcock J.C., Dragovic M., Carr V., Almeida O.P., Flicker L., Montgomery G., et al. 2012. Impact of the Reelin signaling cascade (ligands–receptors–adaptor complex) on cognition in schizophrenia. Am. J. Med. Genet. B: Neuropsychiatr. Genet. 159B, 392–404.CrossRefGoogle Scholar
  14. 14.
    Greenbaum L., Levin R., Lerer E., Alkelai A., Kohn Y., Heresco-Levy U., Ebstein R.P., Lerer B. 2011. Association of reelin (RELN) single nucleotide polymorphism rs7341475 with prepulse inhibition in the Jewish Israeli population. Biol. Psychiatry. 69, e17-8. doi 10.1016/ j.biopsych.2010.09.059CrossRefPubMedGoogle Scholar
  15. 15.
    Baune B.T., Konrad C., Suslow T., Domschke K., Birosova E., Sehlmeyer C., Beste C. 2010. The reelin (RELN) gene is associated with executive function in healthy individuals. Neurobiol. Learn. Mem. 94, 446–451.CrossRefPubMedGoogle Scholar
  16. 16.
    Impagnatiello F., Guidotti A.R., Pesold C., Dwivedi Y., Caruncho H., Pisu M.G., Uzunov D.P., Smalheiser N.R., Davis J.M., Pandey G.N., Pappas G.D., Tueting P., Sharma R.P., Costa E. 1998. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 95, 15 718–15 723.CrossRefGoogle Scholar
  17. 17.
    Guidotti A., Auta J., Davis J.M., Di-Giorgi-Gerevini V., Dwivedi Y., Grayson D.R., Impagnatiello F., Pandey G., Pesold C., Sharma R., Uzunov D., Costa E. 2000. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study. Arch. Gen. Psychiatry. 57, 1061–1069.CrossRefPubMedGoogle Scholar
  18. 18.
    Eastwood S.L., Harrison P.J. 2006. Cellular basis of reduced cortical reelin expression in schizophrenia. Am. J. Psychiatry. 163, 540‒542.CrossRefPubMedGoogle Scholar
  19. 19.
    Habl G., Schmitt A., Zink M., von Wilmsdorff M., Yeganeh-Doost P., Jatzko A., Schneider-Axmann T., Bauer M., Falkai P. 2012. Decreased reelin expression in the left prefrontal cortex (BA9) in chronic schizophrenia patients. Neuropsychobiology. 66, 57–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Grayson D.R., Chen Y., Dong E., Kundakovic M., Guidotti A. 2009. From trans-methylation to cytosine methylation: Evolution of the methylation hypothesis of schizophrenia. Epigenetics. 4, 144‒149.CrossRefPubMedGoogle Scholar
  21. 21.
    Vanyushin B.F. 2014. Epigenetics today and tomorrow. Russ. J. Genet.: Appl. Res. 4 (3), 168–188.CrossRefGoogle Scholar
  22. 22.
    Kundakovic M., Chen Y., Guidotti A., Grayson D.R. 2009. The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol. Pharmacol. 75, 342–354.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen Y., Sharma R.P., Costa R.H., Costa E., Grayson D.R. 2002. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res. 30, 2930–2939.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Abdolmaleky H.M., Cheng K.H., Russo A., Smith C.L., Faraone S.V., Wilcox M., Shafa R., Glatt S.J., Nguyen G., Ponte J.F., Thiagalingam S., Tsuang M.T. 2005. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report. Am. J. Med. Genet. B: Neuropsychiatr. Genet. 134B, 60–66.CrossRefGoogle Scholar
  25. 25.
    Tamura Y., Kunugi H., Ohashi J., Hohjoh H. 2007. Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol. Psychiatry. 519, 593–600.CrossRefGoogle Scholar
  26. 26.
    Nabil Fikri R.M., Norlelawati A.T., Nour El-Huda A.R., Hanisah M.N., Kartini A., Norsidah K., Nor Zamzila A. 2017. Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J. Psychiatr. Res. 88, 28–37.CrossRefPubMedGoogle Scholar
  27. 27.
    Grayson D.R., Jia X., Chen Y., Sharma R.P., Mit-chell C.P., Guidotti A., Costa E. 2005. Reelin promoter hypermethylation in schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 102, 9341–9346.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tochigi M., Iwamoto K., Bundo M., Komori A., Sasaki T., Kato N., Kato T. 2008. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol. Psychiatry. 63, 530–533.CrossRefPubMedGoogle Scholar
  29. 29.
    Alelú-Paz R., González-Corpas A., Ashour N., Escanilla A., Monje A., Guerrero Márquez C., Algora Weber M., Ropero S. 2015. DNA methylation pattern of gene promoters of major neurotransmitter systems in older patients with schizophrenia with severe and mild cognitive impairment. Int. J. Geriatr. Psychiatry. 30, 558–565.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang Y., Sebra R., Pullman B.S., Qiao W., Peter I., Desnick R.J., Geyer C.R., DeCoteau J.F., Scott S.A. 2015. Quantitative and multiplexed DNA methylation analysis using long-read single-molecule real-time bisulfite sequencing (SMRT-BS). BMC Genomics. 16, 350. doi 10.1186/s12864-015-1572-7CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lezheiko T.V., Alfimova M.V. 2017. Epigenetic research of cognitive deficit in schizophrenia: Some methodological considerations. Zh. Nevrol. Psikhiatr. im S.S. Korsakova. 117 (10), 76–80.Google Scholar
  32. 32.
    Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. 2012. Primer3— new capabilities and interfaces. Nucleic Acids Res. 40, e115. doi 10.1093/nar/gks596CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brownie J., Shawcross S., Theaker J., Whitcombe D., Ferrie R., Newton C., Little S. 1997. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 25, 3235–3241.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zheng Z., Advani A., Melefors Ö., Glavas S., Nordström H., Ye W., Engstrand L., Andersson A.F. 2011. Titration-free 454 sequencing using Y adapters. Nat. Protoc. 6, 1367–1376.CrossRefPubMedGoogle Scholar
  35. 35.
    Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12.CrossRefGoogle Scholar
  36. 36.
    Krueger F., Andrews S.R. 2011. Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 27, 1571–1572.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schalkwyk L.C., Meaburn E.L., Smith R., Dempster E.L., Jeffries A.R., Davies M.N., Plomin R., Mill J. 2010. Allelic skewing of DNA methylation is widespread across the genome. Am. J. Hum. Genet. 86, 196–212.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mill J., Tang T., Kaminsky Z., Khare T., Yazdanpanah S., Bouchard L., Jia P., Assadzadeh A., Flanagan J., Schumacher A., Wang S.C., Petronis A. 2008. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am. J. Hum. Genet. 82, 696–711.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wockner L.F., Morris C.P., Noble E.P., Lawford B.R., Whitehall V.L.J., Young R.M., Voisey J. 2015. Brain-specific epigenetic markers of schizophrenia. Transl. Psychiatry. 5, e680. doi 10.1038/tp.2015.177CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Alelú-Paz R., Carmona F.J., Sanchez-Mut J.V., Cariaga-Martínez A., González-Corpas A., Ashour N., Orea M.J., Escanilla A., Monje A., Guerrero Márquez C., Saiz-Ruiz J., Esteller M., Ropero S. 2016. Epigenetics in schizophrenia: A pilot study of global DNA methylation in different brain regions associated with higher cognitive functions. Front. Psychol. 7, 1496. doi 10.3389/fpsyg.2016.01496CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nishioka M., Bundo M., Koike S., Takizawa R., Kakiuchi C., Araki T., Kasai K., Iwamoto K. 2013. Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. J. Hum. Genet. 58, 91–97.CrossRefPubMedGoogle Scholar
  43. 43.
    Kinoshita M., Numata S., Tajima A., Shimodera S., Ono S., Imamura A., Iga J., Watanabe S., Kikuchi K., Kubo H., Nakataki M., Sumitani S., Imoto I., Okazaki Y., Ohmori T. 2013. DNA methylation signatures of peripheral leukocytes in schizophrenia. Neuromol. Med. 15, 95–101.Google Scholar
  44. 44.
    Hannon E., Dempster E., Viana J., Burrage J., Smith A.R., Macdonald R., St Clair D., Mustard C., Breen G., Therman S., Kaprio J., Toulopoulou T., Hulshoff Pol H.E., Bohlken M.M., Kahn R.S., et al. 2016. An integrated genetic-epigenetic analysis of schizophrenia: Evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol. 17, 176. doi 10.1186/s13059-016-1041-xCrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Aberg K.A., McClay J.L., Nerella S., Clark S., Kumar G., Chen W., Khachane A.N., Xie L., Hudson A., Gao G., Harada A., Hultman C.M., Sullivan P.F., Magnusson P.K., van den Oord E.J. 2014. Methylome-wide association study of schizophrenia: Identifying blood biomarker signatures of environmental insults. JAMA Psychiatry. 71, 255–264.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dempster E.L., Pidsley R., Schalkwyk L.C., Owens S., Georgiades A., Kane F., Kalidindi S., Picchioni M., Kravariti E., Toulopoulou T., Murray R.M., Mill J. 2011. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum. Mol. Genet. 20, 4786–4796.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bönsch D., Wunschel M., Lenz B., Janssen G., Weisbrod M., Sauer H. 2012. Methylation matters? Decreased methylation status of genomic DNA in the blood of schizophrenic twins. Psychiatry Res. 198, 533–537.CrossRefPubMedGoogle Scholar
  48. 48.
    Hong E.L., Sloan C.A., Chan E.T., Davidson J.M., Malladi V.S., Strattan J.S., Hitz B.C., Gabdank I., Narayanan A.K., Ho M., Lee B.T., Rowe L.D., Dreszer T.R., Roe G.R., Podduturi N.R., et al. 2016. Principles of metadata organization at the ENCODE data coordination center. Database (Oxford), 2016, baw001. doi 10.1093/database/baw001CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Grayson D.R., Chen Y., Costa E., Dong E., Guidotti A., Kundakovic M., Sharma R.P. 2006. The human reelin gene: Transcription factors (+), repressors (–), and the methylation switch (+/–) in schizophrenia. Pharmacol. Ther. 111, 272–286.CrossRefPubMedGoogle Scholar
  50. 50.
    Lee S.A., Huang K.C. 2016. Epigenetic profiling of human brain differential DNA methylation networks in schizophrenia. BMC Med. Genomics. 9 (Suppl. 3), 68. doi 10.1186/s12920-016-0229-yCrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Jones M.J., Goodman S.J., Kobor M.S. 2015. DNA methylation and healthy human aging. Aging Cell. 14, 924–932. doi 10.1111/acel.12349CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Walton E., Hass J., Liu J., Roffman J.L., Bernardoni F., Roessner V., Kirsch M., Schackert G., Calhoun V., Ehrlich S. 2016. Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophr. Bull. 42, 406–414.CrossRefPubMedGoogle Scholar
  53. 53.
    Jaffe A.E., Irizarry R.A. 2014. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 15, R31. doi 10.1186/gb-2014-15-2-r31CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Dong E., Nelson M., Grayson D.R., Costa E., Guidotti A. 2008. Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc. Natl. Acad. Sci. U. S. A. 105, 13 614–13 619.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. V. Alfimova
    • 1
  • N. V. Kondratiev
    • 1
  • A. K. Golov
    • 1
  • V. E. Golimbet
    • 1
  1. 1.Mental Health Research CenterMoscowRussia

Personalised recommendations