Molecular Biology

, Volume 52, Issue 4, pp 514–519 | Cite as

CAX3 Gene is Involved in Flax Response to High Soil Acidity and Aluminum Exposure

  • A. V. Zyablitsin
  • A. A. Dmitriev
  • G. S. Krasnov
  • N. L. Bolsheva
  • T. A. Rozhmina
  • O. V. Muravenko
  • M. S. Fedorova
  • A. V. Snezhkina
  • A. V. Kudryavtseva
  • N. V. Melnikova
Genomics. Transcriptomics


Understanding the molecular mechanisms of plant response to unfavorable conditions is necessary for the effective selection of tolerant genotypes. Earlier, using high-throughput transcriptome sequencing of flax plants after exposure to aluminum ions (Al3+) and high soil acidity, we detected stress-induced alteration in the expression of several genes, including CAX3, which encodes Ca2+/H+-exchanger involved in calcium ion transport. Here we describe CAX3 mRNA levels in flax cultivars either tolerant (Hermes and TMP1919) or sensitive (Lira and Orshanskiy) to Al3+. Stress-induced increased expression of CAX3 was detected only in aluminum-tolerant flax cultivars. The product of CAX3 gene may participate in flax response to high soil acidity and high Al3+ concentration through Ca2+-mediated intracellular regulation.


flax Linum usitatissimum abiotic stress high soil acidity aluminum CAX3 quantitative PCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kochian L.V., Hoekenga O.A., Pineros M.A. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55, 459–493.CrossRefPubMedGoogle Scholar
  2. 2.
    Kochian L.V., Pineros M.A., Liu J., Magalhaes J.V. 2015. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol. 66, 571–598.CrossRefPubMedGoogle Scholar
  3. 3.
    Panda S.K., Baluska F., Matsumoto H. 2009. Aluminum stress signaling in plants. Plant Signal. Behav. 4, 592–597.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kishlyan N.V., Rozhmina T.A. 2010. Investigathion of flax (Linum usitatissimum L.) gene poole on resistance to soil acidity. Agric. Biol. 1, 96–103.Google Scholar
  5. 5.
    Wang Z., Hobson N., Galindo L., Zhu S., Shi D., McDill J., Yang L., Hawkins S., Neutelings G., Datla R., Lambert G., Galbraith D.W., Grassa C.J., Geraldes A., Cronk Q.C., 2012. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 72, 461–473.CrossRefPubMedGoogle Scholar
  6. 6.
    Galindo-Gonzalez L., Mhiri C., Grandbastien M.A., Deyholos M.K. 2016. Ty1-copia elements reveal diverse insertion sites linked to polymorphisms among flax (Linum usitatissimum L.) accessions. BMC Genomics. 17, 1002.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bolsheva N.L., Zelenin A.V., Nosova I.V., Amosova A.V., Samatadze T.E., Yurkevich O.Y., Melnikova N.V., Zelenina D.A., Volkov A.A., Muravenko O.V. 2015. The diversity of karyotypes and genomes within section Syllinum of the genus Linum (Linaceae) revealed by molecular cytogenetic markers and RAPD analysis. PLoS One. 10, e0122015.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Melnikova N.V., Kudryavtseva A.V., Zelenin A.V., Lakunina V.A., Yurkevich O.Y., Speranskaya A.S., Dmitriev A.A., Krinitsina A.A., Belenikin M.S., Uroshlev L.A., Snezhkina A.V., Sadritdinova A.F., Koroban N.V., Amosova A.V., Samatadze T.E., et al. 2014. Retrotransposon-based molecular markers for analysis of genetic diversity within the genus Linum. Biomed. Res. Int. 2014, 231589.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kumar S., You F.M., Cloutier S. 2012. Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries. BMC Genomics. 13, 684.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dash P.K., Cao Y., Jailani A.K., Gupta P., Venglat P., Xiang D., Rai R., Sharma R., Thirunavukkarasu N., Abdin M.Z., Yadava D.K., Singh N.K., Singh J., Selvaraj G., Deyholos M., Kumar P.A., Datla R. 2014. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum). GM Crops Food. 5, 106–119.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yu Y., Huang W., Chen H., Wu G., Yuan H., Song X., Kang Q., Zhao D., Jiang W., Liu Y., Wu J., Cheng L., Yao Y., Guan F. 2014. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression. Gene. 549, 113–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Dmitriev A.A., Kudryavtseva A.V., Krasnov G.S., Koroban N.V., Speranskaya A.S., Krinitsina A.A., Belenikin M.S., Snezhkina A.V., Sadritdinova A.F., Kishlyan N.V., Rozhmina T.A., Yurkevich O.Y., Muravenko O.V., Bolsheva N.L., Melnikova N.V. 2016. Gene expression profiling of flax (Linum usitatissimum L.) under edaphic stress. BMC Plant Biol. 16, 237.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu J., Pineros M.A., Kochian L.V. 2014. The role of aluminum sensing and signaling in plant aluminum resistance. J. Integr. Plant Biol. 56, 221–230.CrossRefPubMedGoogle Scholar
  14. 14.
    Dmitriev A.A., Krasnov G.S., Rozhmina T.A., Kishlyan N.V., Zyablitsin A.V., Sadritdinova A.F., Snezhkina A.V., Fedorova M.S., Yurkevich O.Y., Muravenko O.V., Bolsheva N.L., Kudryavtseva A.V., Melnikova N.V. 2016. Glutathione S-transferases and UDP-glycosyltransferases are involved in response to aluminum stress in flax. Front. Plant Sci. 7, 1920.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dmitriev A.A., Kudryavtseva A.V., Bolsheva N.L., Zyablitsin A.V., Rozhmina T.A., Kishlyan N.V., Krasnov G.S., Speranskaya A.S., Krinitsina A.A., Sadritdinova A.F., Snezhkina A.V., Fedorova M.S., Yurkevich O.Y., Muravenko O.V., Belenikin M.S., Melnikova N.V. 2017. miR319, miR390, and miR393 are involved in aluminum response in flax (Linum usitatissimum L.). Biomed. Res. Int. 2017, 4975146.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Cheng N.H., Pittman J.K., Shigaki T., Lachmansingh J., LeClere S., Lahner B., Salt D.E., Hirschi K.D. 2005. Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol. 138, 2048–2060.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu T.Y., Aung K., Tseng C.Y., Chang T.Y., Chen Y.S., Chiou T.J. 2011. Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiol. 156, 1176–1189.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cho D., Villiers F., Kroniewicz L., Lee S., Seo Y.J., Hirschi K.D., Leonhardt N., Kwak J.M. 2012. Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH. Plant Physiol. 160, 1293–1302.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhao J., Barkla B.J., Marshall J., Pittman J.K., Hirschi K.D. 2008. The Arabidopsis CAX3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta. 227, 659–669.CrossRefPubMedGoogle Scholar
  20. 20.
    Melnikova N.V., Dmitriev A.A., Belenikin M.S., Koroban N.V., Speranskaya A.S., Krinitsina A.A., Krasnov G.S., Lakunina V.A., Snezhkina A.V., Sadritdinova A.F., Kishlyan N.V., Rozhmina T.A., Klimina K.M., Amosova A.V., Zelenin A.V., et al. 2016. Identification, expression analysis, and target prediction of flax genotroph microRNAs under normal and nutrient stress conditions. Front Plant Sci. 7, 399.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Huis R., Hawkins S., Neutelings G. 2010. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol. 10, 71.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Krasnov G.S., Oparina N.Y., Dmitriev A.A., Kudryavtseva A.V., Anedchenko E.A., Kondrat’eva T.T., Zabarovsky E.R., Senchenko V.N. 2011. RPN1, a new reference gene for quantitative data normalization in lung and kidney cancer. Mol. Biol. (Moscow). 45, 211–220.CrossRefGoogle Scholar
  23. 23.
    Melnikova N.V., Dmitriev A.A., Belenikin M.S., Speranskaya A.S., Krinitsina A.A., Rachinskaia O.A., Lakunina V.A., Krasnov G.S., Snezhkina A.V., Sadritdinova A.F., Uroshlev L.A., Koroban N.V., Samatadze T.E., Amosova A.V., Zelenin A.V., et al. 2015. Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L. Biochimie. 109, 36–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Shigaki T., Sreevidya C., Hirschi K.D. 2002. Analysis of the Ca2+ domain in the Arabidopsis H+/Ca2+ antiporters CAX1 and CAX3. Plant Mol. Biol. 50, 475–483.CrossRefPubMedGoogle Scholar
  25. 25.
    Medvedev S.S. 2005. Calcium signaling system in plants. Russ. J. Plant Physiol. 52, 249–270.CrossRefGoogle Scholar
  26. 26.
    Knight H. 2000. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195, 269–324.CrossRefPubMedGoogle Scholar
  27. 27.
    McAinsh M.R., Pittman J.K. 2009. Shaping the calcium signature. New Phytol. 181, 275–294.CrossRefPubMedGoogle Scholar
  28. 28.
    Rengel Z., Zhang W.H. 2003. Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol. 159, 295–314.CrossRefGoogle Scholar
  29. 29.
    Evans D.E., Briars S.A., Williams L.E. 1991. Active calcium transport by plant cell membranes. J. Exp. Bot. 42, 285–303.CrossRefGoogle Scholar
  30. 30.
    Dupont F.M., Bush D.S., Windle J.J., Jones R.L. 1990. Calcium and proton transport in membrane vesicles from barley roots. Plant Physiol. 94, 179–188.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ryan P.R., Reid R.J., Smith F.A. 1997. Direct evaluation of the Ca2+ -displacement hypothesis for Al toxicity. Plant Physiol. 113, 1351–1357.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Blamey F.P.C. 2001. The role of the root cell wall in aluminum toxicity. In: Plant Nutrient Acquisition. Eds. Ae N. Tokyo: Springer, pp. 201–226.CrossRefGoogle Scholar
  33. 33.
    Horst W.J., Wang Y., Eticha D. 2010. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: A review. Ann. Bot. 106, 185–197.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rengel Z. 1992. Role of calcium in aluminium toxicity. New Phytol. 121, 499–513.CrossRefGoogle Scholar
  35. 35.
    Caldwell C.R. 1989. Analysis of aluminum and divalent cation binding to wheat root plasma membrane proteins using terbium phosphorescence. Plant Physiol. 91, 233–241.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Poovaiah B.W., Reddy A.S. 1993. Calcium and signal transduction in plants. CRC Crit. Rev. Plant Sci. 12, 185–211.CrossRefPubMedGoogle Scholar
  37. 37.
    Yuan H.M., Liu W.C., Jin Y., Lu Y.T. 2013. Role of ROS and auxin in plant response to metal-mediated stress. Plant Signal Behav. 8, e24671.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pei Z.M., Murata Y., Benning G., Thomine S., Klusener B., Allen G.J., Grill E., Schroeder J.I. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature. 406, 731–734.CrossRefPubMedGoogle Scholar
  39. 39.
    Mori I.C., Schroeder J.I. 2004. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 135, 702–708.PubMedGoogle Scholar
  40. 40.
    Murata Y., Pei Z.M., Mori I.C., Schroeder J. 2001. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell. 13, 2513–2523.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Demidchik V., Shabala S.N., Coutts K.B., Tester M.A., Davies J.M. 2003. Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J. Cell Sci. 116, 81–88.CrossRefPubMedGoogle Scholar
  42. 42.
    Conn S.J., Gilliham M., Athman A., Schreiber A.W., Baumann U., Moller I., Cheng N.H., Stancombe M.A., Hirschi K.D., Webb A.A., Burton R., Kaiser B.N., Tyerman S.D., Leigh R.A. 2011. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, GAS exchange, and plant productivity in Arabidopsis. Plant Cell. 23, 240–257.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Zyablitsin
    • 1
  • A. A. Dmitriev
    • 1
  • G. S. Krasnov
    • 1
  • N. L. Bolsheva
    • 1
  • T. A. Rozhmina
    • 1
    • 2
  • O. V. Muravenko
    • 1
  • M. S. Fedorova
    • 1
  • A. V. Snezhkina
    • 1
  • A. V. Kudryavtseva
    • 1
  • N. V. Melnikova
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.All-Russian Research Institute for FlaxTorzhokRussia

Personalised recommendations