Molecular Biology

, Volume 52, Issue 4, pp 629–635 | Cite as

Immuno-PCR Assay for Quantitation of Antibodies to Epstein–Barr Virus

  • V. D. Pivovarov
  • D. Yu. Ryazantsev
  • M. A. Simonova
  • T. V. Yegorova
  • S. V. Khlgatian
  • S. K. Zavriev
  • E. V. SvirshchevskayaEmail author


Successful disease prevention and therapy critically depend on timely diagnosis of infections. Quantitative immuno-PCR (qiPCR) technology improves the sensitivity in the detection of antibodies to pathogens. A qiPCR-based assay was developed to determine IgG antibodies to Epstein–Barr virus (EBV) in the human blood serum. EBV nuclear protein 1 fragment (pEBV) was expressed in Escherichia coli. A synthetic single-stranded deoxyribonucleotide was conjugated to streptavidin, and the conjugate was used to detect рEBV–IgG1–biotin complexes by qiPCR. The IgG1 titers determined by qiPCR were compared to the results of enzyme-linked immunosorbent assay (ELISA). The sensitivity of qiPCR was one order of magnitude higher than that of ELISA. Thus, a highly sensitive qiPCR-based assay was developed to quantitate antibodies specific to the recombinant EBV antigen.


quantitative immuno-PCR ELISA recombinant proteins Epstein–Barr virus EBNA1 IgG1 



enzyme-linked immunosorbent assay


Epstein–Barr nuclear antigen 1


Epstein–Barr virus


immunoglobulin G1




quantitative iPCR


streptavidin–oligodeoxyribonucleotide complex


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ryazantsev D.Y., Voronina D.V., Zavriev S.K. 2016. Immuno-PCR: Achievements and perspectives. Biochemistry (Moscow). 81, 1754–1770.PubMedGoogle Scholar
  2. 2.
    Chang L., Li J., Wang L. 2016. Immuno-PCR: An ultrasensitive immunoassay for biomolecular detection. Anal. Chim. Acta. 910, 12–124.CrossRefPubMedGoogle Scholar
  3. 3.
    Jani D., Savino E., Goyal J. 2015. Feasibility of immuno-PCR technology platforms as an ultrasensitive tool for the detection of anti-drug antibodies. Bioanalysis. 7, 285–294.CrossRefPubMedGoogle Scholar
  4. 4.
    Mweene A.S., Ito T., Okazaki K., Ono E., Shimizu Y., Kida H. 1996. Development of immuno-PCR for diagnosis of bovine herpesvirus 1 infection. J. Clin. Microbiol. 34, 748–750.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Halpern M.D., Jain S., Jewett M.W. 2013. Enhanced detection of host response antibodies to Borrelia burgdorferi using immuno-PCR. Clin. Vaccine Immunol. 20, 350–357.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Spengler M., Adler M., Jonas A., Niemeyer C. 2009. Immuno-PCR assays for immunogenicity testing. Biochem. Biophys. Res. Commun. 387, 278–282.CrossRefPubMedGoogle Scholar
  7. 7.
    Morin I., Askin S.P., Schaeffer P.M. 2011. IgG-detection devices for the Tus-Ter-lock immuno-PCR diagnostic platform. Analyst. 136, 4815–4821.CrossRefPubMedGoogle Scholar
  8. 8.
    Chia-Ching L., Subramaniam S., Sivasubramanian S., Feng-Huei L. 2016. MWCNT-Fe3O4-based immuno- PCR for the early screening of nasopharyngeal carcinoma. Mater. Sci. Eng. C. Mater. Biol. Appl. 61, 422–428.CrossRefPubMedGoogle Scholar
  9. 9.
    Singh N., Sreenivas V., Gupta K.B., Chaudhary A., Mittal A., Varma-Basil M., Prasad R., Gakhar S.K., Khuller G.K., Mehta P.K. 2015. Diagnosis of pulmonary and extrapulmonary tuberculosis based on detection of mycobacterial antigen 85B by immuno-PCR. Diagn. Microbiol. Infect. Dis. 83, 359–364.CrossRefPubMedGoogle Scholar
  10. 10.
    Rymbai M.L., Ramalingam V.V., Samarasan I., Chandran B.S., Mathew G., Jerobin J., Abraham A.M., Sachithanandham J., Kannangai R. 2015. Frequency of Epstein-Barr virus infection as detected by messenger RNA for EBNA 1 in histologically proven gastric adenocarcinoma in patients presenting to a tertiary care center in South India. Indian J. Med. Microbiol. 33, 369–373.CrossRefPubMedGoogle Scholar
  11. 11.
    Kayamba V., Monze M., Asombang A.W., Zyambo K., Kelly P. 2016. Serological response to Epstein-Barr virus early antigen is associated with gastric cancer and human immunodeficiency virus infection in Zambian adults: A case-control study. Pan. Afr. Med. J. 23, 45.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Banko A.V., Lazarevic I.B., Folic M.M., Djukic V.B., Cirkovic A.M., Karalic D.Z., Cupic M.D., Jovanovic T.P. 2016. Characterization of the variability of Epstein- Barr virus genes in nasopharyngeal biopsies: Potential predictors for carcinoma progression. PLoS One. 11, e0153498.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Frappier L. 2015. EBNA1. Curr. Top. Microbiol. Immunol. 391, 3–34.PubMedGoogle Scholar
  14. 14.
    Myhr K.M., Riise T., Barrett-Connor E., Myrmel H., Vedeler C., Grønning M., Kalvenes M.B., Nyland H. 1998. Altered antibody pattern to Epstein-Barr virus but not to other herpesviruses in multiple sclerosis: A population based case-control study from western Norway. Neurol. Neurosurg. Psychiatry. 64, 539–542.CrossRefGoogle Scholar
  15. 15.
    Lomakin Y., Arapidi G.P., Chernov A., Ziganshin R., Tcyganov E., Lyadova I., Butenko I.O., Osetrova M., Ponomarenko N., Telegin G, Govorun V.M., Gabibov A., Belogurov A., Jr. 2017. Exposure to the Epstein-Barr viral antigen latent membrane protein 1 induces myelinreactive antibodies in vivo. Front Immunol. 8, 777, 1–11.Google Scholar
  16. 16.
    Piroozmand A., Haddad Kashani H., Zamani B. 2017. Correlation between Epstein-Barr virus infection and disease activity of systemic lupus erythematosus: A cross-sectional study. Asian Pac. J. Cancer Prev. 18, 523–527.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Pan R., Liu X., Zhou S., Ning Z., Zheng H., Gao M., Ding Y., Yao W., Liao X., He N. 2017. Differential prevalence and correlates of whole blood Epstein-Barr virus DNA between HIV-positive and HIV-negative men who have sex with men in Shanghai, China. Epidemiol. Infect. 145, 2330–2340.CrossRefPubMedGoogle Scholar
  18. 18.
    Lindsey J.W., de Gannes S.L., Pate K.A., Zhao X. 2016. Antibodies specific for Epstein-Barr virus nuclear antigen-1 cross-react with human heterogeneous nuclear ribonucleoprotein L. Mol. Immunol. 69, 7–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Lindsey J.W. 2017. Antibodies to the Epstein-Barr virus proteins BFRF3 and BRRF2 cross-react with human proteins. Neuroimmunology. 310, 131–134.CrossRefGoogle Scholar
  20. 20.
    Al Sidairi H., Binkhamis K., Jackson C., Roberts C., Heinstein C., MacDonald J., Needle R., Hatchette T.F., LeBlanc J.J. 2017. Comparison of two automated instruments for Epstein-Barr virus serology in a large adult hospital and implementation of an Epstein-Barr virus nuclear antigen-based testing algorithm. J. Med. Microbiol. 66 (11), 1628–1634. doi 10.1099/jmm.0.000616CrossRefPubMedGoogle Scholar
  21. 21.
    Maylin S., Feghoul L., Salmona M., Herda A., Mercier-Delarue S., Simon F., Legoff J. 2017. Evaluation the Architect EBV VCA IgM, VCA IgG, and EBNA-1 IgG chemiluminescent immunoassays to assess EBV serostatus prior transplantation. Med. Virol. 89, 2003–2010.CrossRefGoogle Scholar
  22. 22.
    Maerle A.V., Voronina D.V., Dobrochaeva K.L., Galanina O.E., Alekseev L.P., Bovin N.V., Zavriev S.K., Ryazantsev D.Y. 2017. Immuno-PCR technology for detection of natural human antibodies against Le(c) disaccharide. Glycoconj. J. 34 (32), 199–205.CrossRefPubMedGoogle Scholar
  23. 23.
    Svirshchevskaya E., Fattakhova G., Khlgatian S., Chudakov D., Kashirina E., Ryazantsev D., Kotsareva O., Zavriev S. 2016. Direct versus sequential immunoglobulins switch in allergy and antiviral responses. Clin. Immunol. 170, 31–38.CrossRefPubMedGoogle Scholar
  24. 24.
    Loebel M., Eckey M., Sotzny F., Hahn E., Bauer S., Grabowski P., Zerweck J., Holenya P., Hanitsch L.G., Wittke K., Borchmann P., Rüffer J.U., Hiepe F., Ruprecht K., Behrends U., et al. 2017. Serological profiling of the EBV immune response in chronic fatigue syndrome using a peptide microarray. PLoS One. 12, e0179124.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Simon K.C., Saghafian-Hedengren S., Sverremark-Ekström E., Nilsson C., Ascherio A. 2012. Age at Epstein-Barr virus infection and Epstein-Barr virus nuclear antigen-1 antibodies in Swedish children. Mult. Scler. Relat. Disord. 1 (3), 136–138.CrossRefPubMedGoogle Scholar
  26. 26.
    Fachiroh J., Schouten T., Hariwiyanto B., Paramita D.K., Harijadi A., Haryana S.M., Ng M.H., Middeldorp J.M. 2004. Molecular diversity of Epstein-Barr virus IgG and IgA antibody responses in nasopharyngeal carcinoma: A comparison of Indonesian, Chinese, and European subjects. J. Infect. Dis. 190, 53–62.CrossRefPubMedGoogle Scholar
  27. 27.
    Nociti V., Frisullo G., Marti A., Luigetti M., Iorio R., Patanella A.K., Bianco A., Tonali P.A., Grillo R.L., Sabatelli M., Batocchi A.P. 2010. Epstein-Barr virus antibodies in serum and cerebrospinal fluid from multiple sclerosis, chronic inflammatory demyelinating polyradiculoneuropathy and amyotrophic lateral sclerosis. J. Neuroimmunol. 225, 149–152.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. D. Pivovarov
    • 1
  • D. Yu. Ryazantsev
    • 1
  • M. A. Simonova
    • 1
  • T. V. Yegorova
    • 1
  • S. V. Khlgatian
    • 2
  • S. K. Zavriev
    • 1
  • E. V. Svirshchevskaya
    • 1
    Email author
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Mechnikov Institute of Vaccines and SeraMoscowRussia

Personalised recommendations