Advertisement

Molecular Biology

, Volume 52, Issue 4, pp 577–582 | Cite as

Expression of SLC30A10 and SLC23A3 Transporter mRNAs in Caco-2 Cells Correlates with an Increase in the Area of the Apical Membrane

  • S. V. Nikulin
  • E. N. Knyazev
  • A. A. Poloznikov
  • S. A. Shilin
  • I. N. Gazizov
  • G. S. Zakharova
  • T. N. Gerasimenko
Molecular Cell Biology
  • 12 Downloads

Abstract

Drug bioavailability studies commonly employ in vitro barrier tissue models consisting of epithelial and endothelial cells. These experiments require that the cell barrier quality be assessed regularly, which is usually performed using various labeled substrates and/or evaluation of transepithelial (transendothelial) electrical resistance (TEER). This technique provides information on the integrity of the monolayer, but not on differentiation-induced changes in the cell morphology. The present work shows that impedance spectroscopy can be applied to monitor both the integrity of the monolayer and the morphological changes of Caco-2 cells. The growth kinetics of the apical membrane was determined by calculating the electrical capacitance of the cell monolayer. In the course of differentiation, the most pronounced changes in the expression levels were observed for the mRNAs that encode SLC30A10 and SLC23A3 transporters. Their increase correlated with an increase in the apical membrane area, indicating that SLC30A10 and SLC23A3 mRNA levels assessed by qRT-PCR may be employed as cell differentiation biomarkers in Caco-2 models.

Keywords

impedance spectroscopy barrier tissues TEER electrical capacitance Caco-2 

Abbreviations

TEER

transepithelial (transendothelial) electrical resistance

CGM

complete growth medium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sambuy Y., De Angelis I., Ranaldi G., Scarino M.L., Stammati A., Zucco F. 2005. The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 21, 1–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Deli M.A., Abrahám C.S., Kataoka Y., Niwa M. 2005. Permeability studies on in vitro blood-brain barrier models: Physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25, 59–127.CrossRefPubMedGoogle Scholar
  3. 3.
    Poulsen M.S., Rytting E., Mose T., Knudsen L.E. 2009. Modeling placental transport: Correlation of in vitro BeWo cell permeability and ex vivo human placental perfusion. Toxicol. In Vitro. 23, 1380–1386.CrossRefPubMedGoogle Scholar
  4. 4.
    Kinne R.K.H. 1997. Endothelial and epithelial cells: General principles of selective vectorial transport. Int. J. Microcirc. 17, 223–230.CrossRefGoogle Scholar
  5. 5.
    Senyavina N.V, Gerasimenko T.N., Fomicheva K.A., Tonevitskaya S.A., Kaprin A.D. 2016. Localization and expression of nucleoside transporters ENT1 and ENT2 in polar cells of intestinal epithelium. Bull. Exp. Biol. Med. 160, 771–774.CrossRefPubMedGoogle Scholar
  6. 6.
    Srinivasan B., Kolli A.R., Esch M.B., Abaci H.E., Shuler M.L., Hickman J.J. 2015. TEER measurement techniques for in vitro barrier model systems. J. Lab. Autom. 20, 107–126.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Audus K.L., Bartel R.L., Hidalgo I.J., Borchardt R.T. 1990. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm. Res. 7, 435–451.CrossRefPubMedGoogle Scholar
  8. 8.
    Benson K., Cramer S., Galla H.-J. 2013. Impedancebased cell monitoring: barrier properties and beyond. Fluids Barriers CNS. 10, 5. doi 10.1186/2045-8118-10-5CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Knyazev E.N., Nyushko K.M., Alekseev B.Y., Samatov T.R., Shkurnikov M.Y. 2015. Suppression of ITGB4 gene expression in PC-3 cells with short interfering RNA induces changes in the expression of β-integrins associated with RGD-receptors. Bull. Exp. Biol. Med. 159, 541–545.CrossRefPubMedGoogle Scholar
  10. 10.
    Shkurnikov M.Y., Knyazev E.N., Wicklein D., Schumacher U., Samatov T.R., Tonevitskii A.G. 2016. Role of L1CAM in the regulation of the canonical Wnt pathway and class I MAGE genes. Bull. Exp. Biol. Med. 160, 807–810.CrossRefPubMedGoogle Scholar
  11. 11.
    Samatov T.R., Senyavina N.V., Galatenko V.V., Trushkin E.V., Tonevitskaya S.A., Alexandrov D.E., Shibukhova G.P., Schumacher U., Tonevitsky A.G. 2016. Tumour-like druggable gene expression pattern of CaCo2 cells in microfluidic chip. BioChip J. 10, 215–220.CrossRefGoogle Scholar
  12. 12.
    Gerasimenko T.N., Senyavina N.V., Anisimov N.U., Tonevitskaya S.A. 2016. A model of cadmium uptake and transport in Caco-2 cells. Bull. Exp. Biol. Med. 161, 187–192.CrossRefPubMedGoogle Scholar
  13. 13.
    Sakharov D.A., Maltseva D. V, Riabenko E.A., Shkurnikov M.U., Northoff H., Tonevitsky A.G., Grigoriev A.I. 2012. Passing the anaerobic threshold is associated with substantial changes in the gene expression profile in white blood cells. Eur. J. Appl. Physiol. 112, 963–972.CrossRefPubMedGoogle Scholar
  14. 14.
    Tonevitsky A.G., Maltseva D.V., Abbasi A., Samatov T.R., Sakharov D.A., Shkurnikov M.U., Lebedev A.E., Galatenko V.V., Grigoriev A.I., Northoff H. 2013. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC Physiol. 13, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Samatov T.R., Galatenko V.V., Senyavina N.V., Galatenko A.V., Shkurnikov M.Y., Tonevitskaya S.A., Sakharov D.A., Marx U., Ehrlich H., Schumacher U., Tonevitsky A.G. 2017. miRNA-mediated expression switch of cell adhesion genes driven by microcirculation in chip. BioChip J. 1–8.Google Scholar
  16. 16.
    Vandrangi P., Lo D.D., Kozaka R., Ozaki N., Carvajal N., Rodgers V.G.J. 2013. Electrostatic properties of confluent Caco-2 cell layer correlates to their microvilli growth and determines underlying transcellular flow. Biotechnol. Bioeng. 110, 2742–2748.CrossRefPubMedGoogle Scholar
  17. 17.
    Crawley S.W., Shifrin D.A., Grega-Larson N.E., McConnell R.E., Benesh A.E., Mao S., Zheng Y., Zheng Q.Y., Nam K.T., Millis B.A., Kachar B., Tyska M.J. 2014. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell. 157, 433–446.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mitra K., Ubarretxena-Belandia I., Taguchi T., Warren G., Engelman D.M. 2004. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. U. S. A. 101, 4083–4088.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fishilevich S., Nudel R., Rappaport N., Hadar R., Plaschkes I., Iny Stein T., Rosen N., Kohn A., Twik M., Safran M., Lancet D., Cohen D. 2017. GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017, bax028. doi 10.1093/database/bax028Google Scholar
  20. 20.
    Hidalgo I.J., Raub T.J., Borchardt R.T. 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96, 736–749.CrossRefPubMedGoogle Scholar
  21. 21.
    Ranaldi G., Consalvo R., Sambuy Y., Scarino M.L. 2003. Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free media. Toxicol. Vitr. 17, 761–767.CrossRefGoogle Scholar
  22. 22.
    Crawley S.W., Mooseker M.S., Tyska M.J. 2014. Shaping the intestinal brush border. J. Cell Biol. 207, 441–451.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jumarie C., Malo C. 1991. Caco-2 cells cultured in serum-free medium as a model for the study of enterocytic differentiation in vitro. J. Cell. Physiol. 149, 24–33.CrossRefPubMedGoogle Scholar
  24. 24.
    Yang R., Kerschner J.L., Harris A. 2016. Hepatocyte nuclear factor 1 coordinates multiple processes in a model of intestinal epithelial cell function. Biochim. Biophys. Acta. 1859, 591–598.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fiatte C., Huin C., Bertin I., Lesuffleur T., Pluvinet A., Touche N., Plénat F., Dauça M., Domenjoud L., Schohn H. 2006. Genetic analysis of peroxisome proliferator-activated receptor gamma1 splice variants in human colorectal cell lines. Int. J. Oncol. 29, 1601–1610.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. V. Nikulin
    • 1
    • 2
  • E. N. Knyazev
    • 1
  • A. A. Poloznikov
    • 1
  • S. A. Shilin
    • 1
  • I. N. Gazizov
    • 1
  • G. S. Zakharova
    • 1
  • T. N. Gerasimenko
    • 1
  1. 1.Bioclinicum Research and Development CenterMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)Dolgoprudny, Moscow oblastRussia

Personalised recommendations