Advertisement

Molecular Biology

, Volume 52, Issue 4, pp 489–496 | Cite as

The Rice OsDUF810 Family: OsDUF810.7 May be Involved in the Tolerance to Salt and Drought

  • L.-H. Li
  • M.-M. Lv
  • X. Li
  • T.-Z. Ye
  • X. He
  • S.-H. Rong
  • Y.-L. Dong
  • Y. Guan
  • X.-L. Gao
  • J.-Q. Zhu
  • Z.-J. Xu
Genomics. Transcriptomics

Abstract

With the advance of sequencing technology, the number of sequenced plant genomes has been rapidly increasing. However, understanding of the gene function in these sequenced genomes lags far behind; as a result, many coding plant sequences in public databases are annotated as proteins with domains of unknown function (DUF). Function of a protein family DUF810 in rice is not known. In this study, we analysed seven members of OsDU810 (OsDUF810.1–OsDUF810.7) family with three distinct motifs in rice Nipponbare. By phylogenetic analysis, OsDUF810 proteins fall into three major groups (I, II, III). Expression patterns of the seven corresponding OsDUF810 protein-encoding genes in 15 different rice tissues vary. Under drought, salt, cold and heat stress conditions and ABA treatment, the expression of OsDUF810.7 significantly increases. Overexpression of this protein in E. coli lead to a significant enhancement of catalase (CAT) and peroxidase (POD) activities, and improved bacterial resistance to salt and drought.

Keywords

rice DUF gene family expression patterns stress 

Abbreviations

ABA

abscisic acid

CAT

catalase

DUF

the domain of unknown function

POD

peroxidase

SOD

superoxide dismutase

ROS

reactive oxygen species

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyer J.S. 1982. Plant productivity and environment. Science. 218, 443–448.CrossRefPubMedGoogle Scholar
  2. 2.
    Bohnert H.J., Gong Q., Li P., Ma S. 2006. Unraveling abiotic stress tolerance mechanisms: Getting genomics going. Curr. Opin. Plant Biol. 9, 180–188.CrossRefPubMedGoogle Scholar
  3. 3.
    Serrano R., Rodriguez-Navarro A. 2001. Ion homeostasis during salt stress in plants. Curr. Opin. Cell Biol. 13, 399–404.CrossRefPubMedGoogle Scholar
  4. 4.
    Park S.Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T.F., Alfred S.E., Bonetta D., Finkelstein R., Provart N.J., Desveaux D., et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 324, 1068–1071.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kwak J.M., Mori I.C., Pei Z.M., Leonhardt N., Torres M.A., Dangl J.L., Bloom R.E., Bodde S., Jones J.D., Schroeder J.I. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 22, 2623–2633.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sutter J.U., Sieben C., Hartel A., Eisenach C., Thiel G., Blatt M.R. 2007. Abscisic acid triggers the endocytosis of the arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr. Biol. 17, 1396–1402.CrossRefPubMedGoogle Scholar
  7. 7.
    Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K. 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. J. Plant Res. 124, 509–525.CrossRefPubMedGoogle Scholar
  8. 8.
    Bateman A., Coggill P., Finn R.D. 2010. DUFs: families in search of function. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66, 1148–1152.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bischoff V., Nita S., Neumetzler L., Schindelasch D., Urbain A., Eshed R., Persson S., Delmer D., Scheible W.R. 2010. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol. 153, 590–602.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cao X., Yang K.Z., Xia C., Zhang X.Q., Chen L.Q., Ye D. 2010. Characterization of DUF724 gene family in Arabidopsis thaliana. Plant Mol. Biol. 72, 61–73.CrossRefPubMedGoogle Scholar
  11. 11.
    Jones-Rhoades M.W., Borevitz J.O., Preuss D. 2007. Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet. 3, 1848–1861.CrossRefPubMedGoogle Scholar
  12. 12.
    He X., Hou X., Shen Y., Huang Z. 2011. TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Lett. 585, 1231–1237.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim S.J., Ryu M.Y., Kim W.T. 2012. Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligases, AtRDUF1 and AtRDUF2, reduces tolerance to ABAmediated drought stress. Biochem. Biophys. Res. Commun. 420, 141–147.CrossRefPubMedGoogle Scholar
  14. 14.
    Luo C., Guo C., Wang W., Wang L., Chen L. 2014. Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice. Plant Cell Rep. 33, 323–336.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang L., Shen R., Chen L.T., Liu Y.G. 2014. Characterization of a novel DUF1618 gene family in rice. J. Integr. Plant Biol. 56, 151–158.CrossRefPubMedGoogle Scholar
  16. 16.
    Guo C., Luo C., Guo L., Li M., Guo X., Zhang Y., Wang L., Chen L. 2016. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. J. Integr. Plant Biol. 58, 492–502.CrossRefPubMedGoogle Scholar
  17. 17.
    Letunic I., Doerks T., Bork P. 2014. SMART: Recent updates, new developments and status in 2015. Nucleic Acids Res. 43, 257–260.CrossRefGoogle Scholar
  18. 18.
    Bailey T.L., Boden M., Buske F.A., Frith M., Grant C.E., Clementi L., Ren J., Li W.W., Noble W.S. 2009. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 37, W202–208.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., Thompson J.D., Higgins D.G. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.CrossRefPubMedGoogle Scholar
  21. 21.
    Li L., Liu C., Lian X. 2010. Gene expression profiles in rice roots under low phosphorus stress. Plant Mol. Biol. 72, 423–432.CrossRefPubMedGoogle Scholar
  22. 22.
    Li L., Ye T., Gao X., Xu J., Xie C., Zhu J., Deng X., Wang P., Xu Z. 2017. Molecular characterization and functional analysis of the OsPsbR gene family in rice. Mol. Genet. Genomics. 292, 271–281.CrossRefPubMedGoogle Scholar
  23. 23.
    Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402–408.CrossRefPubMedGoogle Scholar
  24. 24.
    Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254.CrossRefPubMedGoogle Scholar
  25. 25.
    LaVallie E.R., DiBlasio E.A., Kovacic S., Grant K.L., Schendel P.F., McCoy J.M. 1993. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology. 11, 187–193.PubMedGoogle Scholar
  26. 26.
    Liang Y., Chen Q., Liu Q., Zhang W., Ding R. 2003. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of saltstressed barley (Hordeum vulgare L.). J. Plant Physiol. 160, 1157–1164.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang X., Shi X., Hao B., Ge S., Luo J. 2005. Duplication and DNA segmental loss in the rice genome: Implications for diploidization. New Phytol. 165, 937–946.CrossRefPubMedGoogle Scholar
  28. 28.
    Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47, 141–153.CrossRefPubMedGoogle Scholar
  29. 29.
    Dubouzet J.G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E.G., Miura S., Seki M., Shinozaki K., Yamaguchi-Shinozaki K. 2003. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33, 751–763.CrossRefPubMedGoogle Scholar
  30. 30.
    Miller G., Shulaev V., Mittler R. 2008. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133, 481–489.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • L.-H. Li
    • 1
  • M.-M. Lv
    • 1
  • X. Li
    • 1
  • T.-Z. Ye
    • 1
  • X. He
    • 1
  • S.-H. Rong
    • 1
  • Y.-L. Dong
    • 1
  • Y. Guan
    • 1
  • X.-L. Gao
    • 1
  • J.-Q. Zhu
    • 1
  • Z.-J. Xu
    • 1
  1. 1.Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of EducationRice Institute of Sichuan Agricultural UniversityChengduChina

Personalised recommendations