Advertisement

Molecular Biology

, Volume 52, Issue 4, pp 510–513 | Cite as

Mutation Frequencies in RNAi Targets in HIV-1 Genomes Obtained from Blood Plasma of Patients Receiving Anti-Retroviral Therapy

  • O. V. Kretova
  • M. A. Gorbacheva
  • D. M. Fedoseeva
  • Y. V. Kravatsky
  • V. R. Chechetkin
  • N. A. Tchurikov
Genomics. Transcriptomics
  • 12 Downloads

Abstract

Gene therapy for AIDS based on RNA interference (RNAi) is currently looked upon as a promising alternative to conventional antiretroviral chemotherapy. The high variability of HIV-1 is the main challenge in developing new approaches to AIDS therapy. To date, about 18 million HIV-1 infected individuals receive antiretroviral therapy worldwide. As of 2017, about 44% of individuals with AIDS received antiretroviral therapy in Russia. Since the RNAs used for efficient RNAi and the corresponding targets in the viral transcript should be perfectly complementary to each other, it is necessary to continuously monitor the nucleotide sequences of clinical HIV-1 isolates obtained from blood and cells of naïve patients and patients receiving antiretroviral therapy. Comprehensive analysis of the mutation frequencies in the viral genome is only possible with deep sequencing approaches. The present paper reports on an analysis of the mutation frequencies in six 100 bp genome regions in clinical HIV-1 isolates obtained from blood plasma of four Russian AIDS patients who have been receiving antiretroviral therapy for several years. These regions contain efficient RNAi targets. The average frequencies of all possible transversions and transitions within the RNAi targets and in their proximity have been estimated. It has been demonstrated that reverse transcriptase inhibition decreases the frequency of a number of reverse mutations. It has been found that mutations in RNAi targets are rarer (5–75 times lower than the mutation frequency for different nucleotide substitutions) than in the adjacent sequences. Our findings speak in favor of these conservative targets for developing new approaches to gene therapy of AIDS.

Keywords

gene therapy HIV-1 mutations antiretroviral therapy transversions transitions RNA interference ultra-deep sequencing 

Abbreviations

HIV-1

human immunodeficiency virus type 1

A1–A6

virus genome regions about 100 bp in length containing efficient RNAi targets

RT

reverse transcriptase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kretova O.V., Fedoseeva D.M., Gorbacheva M.A., Gashnikova N.M., Gashnikova M.P., Melnikova N.V., Chechetkin V.R., Kravatsky Y.V., Tchurikov N.A. 2017. Ultra-deep sequencing data of HIV-1–infected patients from Russia reveals six highly conserved targets of RNAi that are also present in many HIV-1 strains worldwide. Mol. Ther. Nucl. Acids. 8, 330–344. doi 10.1016/j.omtn.2017.07.010CrossRefGoogle Scholar
  2. 2.
    Kretova O.V., Chechetkin V.R., Fedoseeva D.M., Kravatsky Y.V., Sosin D.V., Alembekov I.R., Gorbacheva M.A., Gashnikova N.M., Tchurikov N.A. 2016. Analysis of variability in HIV-1 subtype A strains in Russia suggests a combination of deep sequencing and multi-target RNA interference for silencing of the virus. AIDS Res. Hum. Retroviruses. 33, 194–201.CrossRefPubMedGoogle Scholar
  3. 3.
    Tchurikov N.A., Fedoseeva D.M., Gashnikova N.M., Sosin D.V., Gorbacheva M.A., Alembekov I.R., Chechetkin V.R., Kravatsky Y.V., Kretova O.V. 2016. Conserved sequences in the current strains of HIV-1 subtype A in Russia are effectively targeted by artificial RNAi in vitro. Gene. 583, 78–83.CrossRefPubMedGoogle Scholar
  4. 4.
    Kravatsky Y.V., Chechetkin V.R., Fedoseeva D.M., Gorbacheva M.A., Kretova O.V., Tchurikov N.A. 2016. Mutation frequencies in HIV-1 subtype A genomes in the regions containing the efficient RNAi targets. Mol. Biol. (Moscow). 50, 417–421. doi 10.7868/S0026898416020117CrossRefGoogle Scholar
  5. 5.
    Kretova O.V., Gorbacheva M.A., Fedoseeva D.M., Kravatsky Y.V., Chechetkin V.R., Tchurikov N.A. 2018. Mutation frequences in HIV-1 genome in the regions containing the efficient RNAi targets, as calculated from the deep sequencing data. Mol. Biol. (Moscow). 52, in press.Google Scholar
  6. 6.
    Kravatsky Y., Chechetkin V., Fedoseeva D., Gorbacheva M., Kravatskaya G., Kretova O., Tchurikov N.A. 2017. Bioinformatic pipeline for monitoring of the mutational stability of viral drug targets with deepsequencing technology. Viruses. 9 (12), pii: E357. doi 10.3390/v9120357Google Scholar
  7. 7.
    Beerenwinkel N., Zagordi O. 2011. Ultra-deep sequencing for the analysis of viral population. Curr. Opin. Virol. 1, 413–418.CrossRefPubMedGoogle Scholar
  8. 8.
    Pathak V.K., Temin H.M. 1990. Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc. Natl. Acad. Sci. U. S. A. 87, 6019–6023.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim T., Mudry R.A.Jr., Rexrode C.A., Pathak V.K. 1996. Retroviral mutation rates and A-to-G hypermutations during different stages of retroviral replication. J. Virol. 70, 7594–7602.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Delviks-Frankenberry K.A., Nikolaitchik O.A., Burdick R.C., Gorelick R.J., Keele B.F., Hu W.-S., Pathak V.K. 2016. Minimal contribution of APOBEC3- induced G-to-A hypermutation to HIV-1 recombination and genetic variation. PLoS Pathog. 12 (5), e1005646. doi 10.1371/journal.ppat.1005646CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kwarteng A., Ahuno S.T., Kwakye-Nuako G. 2017. The therapeutic landscape of HIV-1 via genome editing. AIDS Res. Ther. 14 (1), 32. doi 10.1186/s12981-017-0157-8CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Herrera-Carrillo E., Berkhout B. 2015. The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy. Gene Ther. 22, 485–495. doi 10.1038/gt.2015.11CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. V. Kretova
    • 1
  • M. A. Gorbacheva
    • 1
  • D. M. Fedoseeva
    • 1
  • Y. V. Kravatsky
    • 1
  • V. R. Chechetkin
    • 1
  • N. A. Tchurikov
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations