Molecular Biology

, Volume 52, Issue 4, pp 590–597 | Cite as

Enalaprilat Inhibits Zinc-Dependent Oligomerization of Metal-Binding Domain of Amyloid-beta Isoforms and Protects Human Neuroblastoma Cells from Toxic Action of these Isoforms

  • S. A. Kozin
  • V. I. Polshakov
  • Y. V. Mezentsev
  • A. S. Ivanov
  • S. S. Zhokhov
  • M. M. Yurinskaya
  • M. G. Vinokurov
  • A. A. Makarov
  • V. A. Mitkevich
Molecular Cell Biology


Intact amyloid-β peptides (Aβ) may undergo prion-like aggregation when they interact with chemically or structurally modified variants of Aβ present in extracellular pathohistological inclusions (amyloid plaques). This aggregation is regarded as one of the key molecular mechanisms of Alzheimer’s disease (AD) pathogenesis. Zinc ions are involved in the pathological dimerization and oligomerization of natural Aβ isoforms, and zinc-induced oligomers can also initiate the pathological aggregation of Aβ. Based on the earlier found molecular mechanism of zinc-dependent oligomerization of Aβ, it has been suggested that the targeted inhibition of the 11EVHH14 site in one Aβ molecule from zinc-mediated interactions with the same site of another Aβ molecule can effectively inhibit the oligomerization and aggregation of Aβ. Taking into account the similarity in the structural organization of zinc-binding sites within Aβ and angiotensin-converting enzyme (ACE), we hypothesized that inhibitors of the ACE active sites could specifically interact with the 11EVHH14 site of Aβ. Using a surface plasmon resonance biosensor and nuclear magnetic resonance spectroscopy, we have found that the ACE inhibitor enalaprilat effectively inhibits zinc-dependent dimerization of the metal-binding domains of intact Aβ and Aβ with isomerized Asp7 (isoAβ). We have also found that enalaprilat protects SH-SY5Y human neuroblastoma cells from the toxic effects of Aβ(1–42) and isoAβ(1–42), which are among the most common components of amyloid plaques. The results confirm the role of zincdependent oligomerization of Aβ in AD pathogenesis and make it possible one to consider enalaprilat as a prototype of antiaggregation agents for treating AD.


Alzheimer’s disease amyloid-beta isoaspartate enalaprilat zinc NMR spectroscopy surface plasmon resonance neuroblastoma SH-SY5Y 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alzheimer’s Association. 2013. Alzheimer’s disease facts and figures. Alzheimers Dement. 9 (2), 208–245.CrossRefGoogle Scholar
  2. 2.
    Cummings J.L. 2004. Alzheimer’s Disease. New Engl. J. Med. 351 (1), 56–67.CrossRefPubMedGoogle Scholar
  3. 3.
    Selkoe D.J., Hardy J. 2016. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 8 (6), 595–608.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bachurin S.O., Bovina E.V., Ustyugov A.A. 2017. Drugs in clinical trials for Alzheimer’s disease: Major trends. Med. Res. Rev. 37 (5), 1186–1225.CrossRefPubMedGoogle Scholar
  5. 5.
    Bachurin S.O., Gavrilova S.I., Samsonova A., Barreto G.E., Aliev G. 2017. Mild cognitive impairment due to Alzheimer disease: Contemporary approaches to diagnostics and pharmacological intervention. Pharmacol. Res. pii: S1043-6618(17)30937-4. doi 10.1016/ j.phrs.2017.11.021Google Scholar
  6. 6.
    Cummings J., Lee G., Mortsdorf T., Ritter A., Zhong K. 2017. Alzheimer’s disease drug-development pipeline: 2017. Alzheimers Dement. 3 (3), 367–384.Google Scholar
  7. 7.
    Bachurin S.O., Shelkovnikova T.A., Ustyugov A.A., Peters O., Khritankova I., Afanasieva M.A., Tarasova T.V., Alentov I.I., Buchman V.L., Ninkina N.N. 2012. Dimebon slows progression of proteinopathy in gamma-synuclein transgenic mice. Neurotox. Res. 22 (1), 33–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Peters O.M., Connor-Robson N., Sokolov V.B., Aksinenko A.Y., Kukharsky M.S., Bachurin S.O., Ninkina N., Buchman V.L. 2013. Chronic administration of dimebon ameliorates pathology in TauP301S transgenic mice. J. Alzheimer’s Dis. 33, 1041–1049.CrossRefGoogle Scholar
  9. 9.
    Surgucheva I., Ninkina N., Buchman V.L., Grasing K., Surguchov A. 2005. Protein aggregation in retinal cells and approaches to cell protection. Cell Mol. Neurobiol. 25, 1051–1066.CrossRefPubMedGoogle Scholar
  10. 10.
    Viola K.L., Klein W.L. 2015. Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 129, 183–206.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    O’Nuallain B., Freir D.B., Nicoll A.J., Risse E., Ferguson N., Herron C.E., Collinge J., Walsh D.M. 2010. Amyloid beta-protein dimers rapidly form stable synaptotoxic protofibrils. J. Neurosci. 30, 14411–14419.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roberts B.R., Ryan T.M., Bush A.I., Masters C.L., Duce J.A. 2012. The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J. Neurochem. 120, 149–166.CrossRefPubMedGoogle Scholar
  13. 13.
    Iqbal K., Grundke-Iqbal I. 2011. Opportunities and challenges in developing Alzheimer disease therapeutics. Acta Neuropathol. 122, 543–549.CrossRefPubMedGoogle Scholar
  14. 14.
    Popov I.A., Indeikina M.I., Kononikhin A.S., Starodubtseva N.L., Kozin S.A., Makarov, A.A., Nikolaev E.N. 2013. Identification of the minimal zinc-binding center in natural isoforms of amyloid-beta domain 1–16 using ESI-MS. Mol. Biol. (Moscow). 47, 440–445.CrossRefGoogle Scholar
  15. 15.
    Istrate A.N., Tsvetkov P.O., Mantsyzov A.B., Kulikova A.A., Kozin S.A., Makarov A.A., Polshakov V.I. 2012. NMR solution structure of rat Aβ (1–16): Toward understanding the mechanism of rats' resistance to Alzheimer’s disease. Biophys. J. 102, 136–143.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tsvetkov P.O., Kulikova A.A., Golovin A.V., Tkachev Y.V., Archakov A.I., Kozin S.A., Makarov A.A. 2010. Minimal Zn (2+) binding site of amyloid-β. Biophys. J. 99, L84–L86.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zirah S., Kozin S.A., Mazur A.K., Blond A., Cheminant M., Segalas-Milazzo I., Debey P., Rebuffat S. 2006. Structural changes of region 1–16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging. J. Biol. Chem. 281, 2151–2161.CrossRefPubMedGoogle Scholar
  18. 18.
    Zirah S., Rebuffat S., Kozin S.A., Debey P., Fournier F., Lesage D., Tabet J.C. 2003. Zinc binding properties of the amyloid fragment Aβ(1–16) studied by electrospray- ionization mass spectrometry. Int. J. Mass Spectrom. 228, 999–1016.CrossRefGoogle Scholar
  19. 19.
    Kozin S.A., Zirah S., Rebuffat S., Hui Bon Hoa G., Debey P. 2001. Zinc binding to Alzheimer’s Aβ(1–16) peptide results in stable soluble complex. Biochem. Biophys. Res. Commun. 285, 959–964.CrossRefPubMedGoogle Scholar
  20. 20.
    Mezentsev Y.V., Medvedev A.E., Kechko O.I., Makarov A.A., Ivanov A.S., Mantsyzov A.B., Kozin S.A. 2016. Zinc-induced heterodimer formation between metal-binding domains of intact and naturally modified amyloid-beta species: Implication to amyloid seeding in Alzheimer’s disease? J. Biomol. Struct. Dyn. 34, 2317–2326.CrossRefPubMedGoogle Scholar
  21. 21.
    Istrate A.N., Kozin S.A., Zhokhov S.S., Mantsyzov A.B., Kechko O.I., Pastore A., Makarov A.A., Polshakov V.I. 2016. Interplay of histidine residues of the Alzheimer’s disease Aβ peptide governs its Zn-induced oligomerization. Sci. Repts. 6, 21734.CrossRefGoogle Scholar
  22. 22.
    Kozin S.A., Mezentsev Y.V., Kulikova A.A., Indeykina M.I., Golovin A.V., Ivanov A.S., Tsvetkov P.O., Makarov A.A. 2011. Zinc-induced dimerization of the amyloid-beta metal-binding domain 1–16 is mediated by residues 11–14. Mol. Biosyst. 7, 1053–1055.CrossRefPubMedGoogle Scholar
  23. 23.
    Kozin S.A., Makarov A.A. 2015. New biomarkers and drug targets for diagnosis and therapy of Alzheimer’s disease (molecular determinants of zinc-dependent oligomerization of β-amyloid). Zh. Nevrol. Psikhiatr. im. S.S. Korsakova. 115, 5–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Natesh R., Schwager S.L., Sturrock E.D., Acharya K.R. 2003. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 421, 551–554.CrossRefPubMedGoogle Scholar
  25. 25.
    Tzakos A.G., Galanis A.S., Spyroulias G.A., Cordopatis P., Manessi–Zoupa E., Gerothanassis I.P. 2003. Structure–function discrimination of the N- and Ccatalytic domains of human angiotensin-converting enzyme: Implications for Cl–activation and peptide hydrolysis mechanisms. Protein Eng. 16, 993–1003.CrossRefPubMedGoogle Scholar
  26. 26.
    Kozin S.A., Mitkevich V.A., Makarov A.A. 2016. Amyloid-β containing isoaspartate 7 as potential biomarker and drug target in Alzheimer’s disease. Mendeleev Commun. 26, 269–275.CrossRefGoogle Scholar
  27. 27.
    Tsvetkov F.O., Makarov A.A., Archakov A.I., Kozin S.A. 2009. Effect of isomerization of aspartate-7 on the binding of copper (II) ion by the β-amyloid peptide. Biophysics (Moscow). 54 (2), 131–134.CrossRefGoogle Scholar
  28. 28.
    Tsvetkov P.O., Popov I.A., Nikolaev E.N., Archakov A.I., Makarov A.A., Kozin S.A. 2008. Isomerization of the Asp7 residue results in zinc-induced oligomerization of Alzheimer’s disease amyloid β(1–16) peptide. ChemBioChem. 9, 1564–1567.CrossRefPubMedGoogle Scholar
  29. 29.
    Polshakov V.I., Mantsyzov A.B., Kozin S.A., Adzhubei A.A., Zhokhov S.S., van Beek W., Kulikova A.A., Indeykina M.I., Mitkevich V.A., Makarov A.A. 2017. A binuclear zinc interaction fold discovered in the homodimer of Alzheimer’s amyloid-beta fragment with taiwanese mutation D7H. Angew. Chem. Int. Ed. Engl. 56, 11734–11739.CrossRefPubMedGoogle Scholar
  30. 30.
    Mitkevich V.A., Petrushanko I.Y., Yegorov Y.E., Simonenko O.V., Vishnyakova K.S., Kulikova A.A., Tsvetkov P.O., Makarov A.A., Kozin S.A. 2013. Isomerization of Asp7 leads to increased toxic effect of amyloid–β42 on human neuronal cells. Cell Death Disease. 4, e939.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mitkevich V., Kulikova A.A., Barykin E., Petrushanko I., Yurinskaya M., Vinokurov M., Evgen’ev M., Kozin S.A., Makarov A.A. 2015. HSP70 protects neuronal cells from toxic effect of amyloid beta and its isoforms. FEBS J. 282, 176–176.Google Scholar
  32. 32.
    Yurinskaya M.M., Mit’kevich V.A., Evgen’ev M.B., Makarov A.A., Vinokurov M.G. 2016. Heat shock protein HSP70 reduces the secretion of TNFα by neuroblastoma cells and human monocytes induced with beta-amyloid peptides. Mol. Biol. (Moscow). 50 (6), 930–932.CrossRefGoogle Scholar
  33. 33.
    Yurinskaya M.M., Mitkevich V.A., Kozin S.A., Evgen’ev M.B., Makarov A.A., Vinokurov M.G. 2015. HSP70 protects human neuroblastoma cells from apoptosis and oxidative stress induced by amyloid peptide isoAsp7–Abeta (1–42). Cell Death Disease. 6, e1977.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kozin S.A., Mezentsev Y.V., Kulikova A.A., Indeykina M.I., Golovin A.V., Ivanov A.S., Tsvetkov P.O., Makarov A.A. 2011. Zinc-induced dimerization of the amyloid-β metal-binding domain 1–16 is mediated by residues 11–14. Mol. BioSystems. 7, 1053–1055.CrossRefGoogle Scholar
  35. 35.
    Deshpande A., Kawai H., Metherate R., Glabe C.G., Busciglio J. 2009. A role for synaptic zinc in activitydependent Abeta oligomer formation and accumulation at excitatory synapses. J. Neurosci. 29, 4004–4015.CrossRefPubMedGoogle Scholar
  36. 36.
    Todd P.A., Heel R.C. 1986. Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs. 31, 198–248.CrossRefPubMedGoogle Scholar
  37. 37.
    Kozin S.A., Cheglakov I.B., Ovsepyan A.A., Telegin G.B., Tsvetkov P.O., Lisitsa A.V., Makarov A.A. 2013. Peripherally applied synthetic peptide isoAsp7–Aβ (1–42) triggers cerebral β-amyloidosis. Neurotox. Res. 24, 370–376.CrossRefPubMedGoogle Scholar
  38. 38.
    Kulikova A.A., Cheglakov I.B., Kukharsky M.S., Ovchinnikov R.K., Kozin S.A., Makarov A.A. 2016. Intracerebral injection of metal-binding domain of Abeta comprising the isomerized Asp7 increases the amyloid burden in transgenic mice. Neurotox. Res. 29, 551–557.CrossRefPubMedGoogle Scholar
  39. 39.
    Shelkovnikova T.A., Kulikova A.A., Tsvetkov F.O., Peters O., Bachurin S.O., Bukhman V.L., Ninkina N.N. 2012. Proteinopathies: Forms of neurodegenerative disorders with protein aggregation-based pathology. Mol. Biol. (Moscow). 46 (3), 362–374.CrossRefGoogle Scholar
  40. 40.
    Kulikova A.A., Makarov A.A., Kozin S.A. 2015. The role of zinc ions and structural polymorphism of β- amyloid in the Alzheimer’s disease initiation. Mol. Biol. (Moscow). 49 (2), 217–230.CrossRefGoogle Scholar
  41. 41.
    Toropygin I.Y., Kugaevskaya E.V., Mirgorodskaya O.A., Elisseeva Y.E., Kozmin Y.P., Popov I.A., Nikolaev E.N., Makarov A.A., Kozin S.A. 2008. The N-domain of angiotensin-converting enzyme specifically hydrolyzes the Arg5–His6 bond of Alzheimer’s Aβ-(1–16) peptide and its isoAsp7 analogue with different efficiency as evidenced by quantitative matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 22, 231–239.CrossRefPubMedGoogle Scholar
  42. 42.
    Nisbet R.M., Nuttall S.D., Robert R., Caine J.M., Dolezal O., Hattarki M., Pearce L.A., Davydova N., Masters C.L., Varghese J.N., Streltsov V.A. 2013. Structural studies of the tethered N-terminus of the Alzheimer’s disease amyloid-β peptide. Proteins: Struct. Funct., Bioinf. 81, 1748–1758.CrossRefGoogle Scholar
  43. 43.
    Dong Y.F., Kataoka K., Tokutomi Y., Nako H., Nakamura T., Toyama K., Sueta D., Koibuchi N., Yamamoto E., Ogawa H., Kim-Mitsuyama S. 2011. Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease. FASEB J. 25, 2911–2920.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. A. Kozin
    • 1
  • V. I. Polshakov
    • 2
  • Y. V. Mezentsev
    • 3
  • A. S. Ivanov
    • 3
  • S. S. Zhokhov
    • 2
  • M. M. Yurinskaya
    • 1
    • 4
  • M. G. Vinokurov
    • 4
  • A. A. Makarov
    • 1
  • V. A. Mitkevich
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Fundamental MedicineMoscow State UniversityMoscowRussia
  3. 3.Orekhovich Institute of Biomedical ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow oblastRussia

Personalised recommendations