Molecular Biology

, Volume 52, Issue 4, pp 598–603 | Cite as

Mutations in the Effector Domain of RhoV GTPase Impair Its Binding to Pak1 Protein Kinase

  • I. V. Korobko
  • M. V. Shepelev
Molecular Cell Biology


Atypical RhoV GTPase (Chp/Wrch-2) is a member of the human Rho GTPase family, which belongs to the superfamily of Ras-related small GTPases. The biological functions of RhoV, regulation of its activity, and mechanisms of its action remain largely unexplored. Rho GTPases regulate a wide range of cellular processes by interacting with protein targets called effectors. Several putative RhoV effectors have been identified, including protein kinases of the Pak (p21-activated kinase) family: Pak1, Pak2, Pak4, and Pak6. RhoV GTPase activates Pak1 protein kinase and simultaneously induces its ubiquitin-dependent degradation. Pak1 regulates E-cadherin localization at adherens junctions downstream of RhoV during gastrulation in fish. The effector domain of RhoV mediates its binding to the CRIB (Cdc42/Rac1 interactive binding) motif in the N-terminal p21-binding domain (PBD) of Pak6 protein kinase. The role of the RhoV effector domain in mediating interaction with Pak1 has not been studied. This study has identified mutations in the effector domain of RhoV GTPase (Y60K, T63A, L65A, and D66A) that impair its interaction with Pak1 in the GST-PAK-PBD pull-down assay and coimmunoprecipitation. Our results suggest that the effector domain of RhoV mediates its binding to Pak1, complementing the current view of the molecular basics of RhoV binding to effectors of the Pak family. These data lay the basis for further studies on the role of Pak1 in RhoV-activated signaling pathways and cellular processes.


Chp/RhoV GTPase Pak1 protein kinase Rho GTPases effector domain GST-PAK-PBD pull-down 



p21-binding domain of protein kinase Pak1






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boureux A., Vignal E., Faure S., Fort P. 2007. Evolution of the Rho family of Ras-like GTPases in eukaryotes. Mol. Biol. Evol. 24, 203–216.CrossRefPubMedGoogle Scholar
  2. 2.
    Hodge R.G., Ridley A.J. 2017. Regulation and functions of RhoU and RhoV. Small GTPases. 30, 1–8.CrossRefGoogle Scholar
  3. 3.
    Aspenstrom P. 2017. Fast-cycling Rho GTPases. Small GTPases 20, 1391365.Google Scholar
  4. 4.
    Jaffe A.B., Hall A. 2005. Rho GTPases: Biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269.CrossRefPubMedGoogle Scholar
  5. 5.
    Aronheim A., Broder Y.C., Cohen A., Fritsch A., Belisle B., Abo A. 1998. Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr. Biol. 8, 1125–1128.CrossRefPubMedGoogle Scholar
  6. 6.
    Aspenstrom P., Fransson A., Saras J. 2004. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377, 327–337.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shepelev M.V., Korobko I.V. 2012. Pak6 protein kinase is a novel effector of an atypical Rho family GTPase Chp/RhoV. Biochemistry (Moscow). 77, 26–32.PubMedGoogle Scholar
  8. 8.
    Weisz Hubsman M., Volinsky N., Manser E., Yablonski D., Aronheim A. 2007. Autophosphorylationdependent degradation of Pak1, triggered by the Rhofamily GTPase, Chp. Biochem. J. 404, 487–497.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tay H.G., Ng Y.W., Manser E. 2010. A vertebrate-specific Chp-PAK-PIX pathway maintains E-cadherin at adherens junctions during zebrafish epiboly. PLoS One. 5, e10125.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shepelev M.V., Chernoff J., Korobko I.V. 2011. Rho family GTPase Chp/RhoV induces PC12 apoptotic cell death via JNK activation. Small GTPases. 2, 17–26.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Benard V., Bokoch G.M. 2002. Assay of Cdc42, Rac, and Rho GTPase activation by affinity methods. Methods Enzymol. 345, 349–359.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shutes A., Berzat A.C., Cox A.D., Der C.J. 2004. Atypical mechanism of regulation of the Wrch-1 Rho family small GTPase. Curr. Biol. 14, 2052–2056.CrossRefPubMedGoogle Scholar
  13. 13.
    Chenette E.J., Mitin N.Y., Der C.J. 2006. Multiple sequence elements facilitate Chp Rho GTPase subcellular location, membrane association, and transforming activity. Mol. Biol. Cell. 17, 3108–3121.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lamarche N., Tapon N., Stowers L., Burbelo P.D., Aspenstrom P., Bridges T., Chant J., Hall A. 1996. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell. 87, 519–529.CrossRefPubMedGoogle Scholar
  15. 15.
    Elliot-Smith A.E., Mott H.R., Lowe P.N., Laue E.D., Owen D. 2005. Specificity determinants on Cdc42 for binding its effector protein ACK. Biochemistry. 44, 12373–12383.CrossRefPubMedGoogle Scholar
  16. 16.
    Abo A., Qu J., Cammarano M.S., Dan C., Fritsch A., Baud V., Belisle B., Minden A. 1998. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J. 17, 6527–6540.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ching Y.P., Leong V.Y., Wong C.M., Kung H.F. 2003. Identification of an autoinhibitory domain of p21-activated protein kinase 5. J. Biol. Chem. 278, 33621–33624.CrossRefPubMedGoogle Scholar
  18. 18.
    Ruusala A., Aspenstrom P. 2008. The atypical Rho GTPase Wrch1 collaborates with the nonreceptor tyrosine kinases Pyk2 and Src in regulating cytoskeletal dynamics. Mol. Cell. Biol. 28, 1802–1814.CrossRefPubMedGoogle Scholar
  19. 19.
    Ory S., Brazier H., Blangy A. 2007. Identification of a bipartite focal adhesion localization signal in RhoU/Wrch-1, a Rho family GTPase that regulates cell adhesion and migration. Biol. Cell. 99, 701–716.CrossRefPubMedGoogle Scholar
  20. 20.
    Brady D.C., Alan J.K., Madigan J.P., Fanning A.S., Cox A.D. 2009. The transforming Rho family GTPase Wrch-1 disrupts epithelial cell tight junctions and epithelial morphogenesis. Mol. Cell. Biol. 29, 1035–1049.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations