Advertisement

Molecular Biology

, Volume 52, Issue 4, pp 621–628 | Cite as

CTAB-PEG DNA Extraction from Fungi with High Contents of Polysaccharides

  • X. Huang
  • N. Duan
  • H. Xu
  • T. N. Xie
  • Y.-R. Xue
  • C.-H. Liu
Methods
  • 43 Downloads

Abstract

Polysaccharides influence concentration and purity of extracted DNA. Here we present rapid and efficient protocol for DNA extraction from samples rich in polysaccharides. The technique has been developed using cultures of Schizophyllum commune and involves a modification of known Cetyltrimethyl Ammonium Bromide (CTAB) protocol. To remove polysaccharides, Polyethylene Glycol (PEG) 8000 was added during DNA precipitation. Genomic DNA obtained with the CTAB-PEG method had high integrity, with average fragment size >30 kb, the concentration higher than 100 ng/μL, and the yield more than 30 μg/g. Presented technique is suitable for DNA extraction from fungi, bacteria, archaea or even mollusks with high polysaccharide content.

Keywords

Fungal genome CTAB PEG polysaccharides Schizophyllum commune 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li Z.L. 1994. Study on the structure of polysaccharide. J. Nanjing Univ. (Nat. Sci.). 3, 482–487.Google Scholar
  2. 2.
    Ji Y.Z., Du L.X. 2003. Schizophyllan extraction and structure of deep culture. Microbiol. China. 30, 15–20.Google Scholar
  3. 3.
    Wang Z.H., Huo Y.F. 2006. Advanced in Schizophyllum commune and Schizophyllian polysaccharose. J. Microbiol. 26, 73–76.Google Scholar
  4. 4.
    Zhao Q., Yuan L.C., Li R.C. 2004. Advances in the research of Schizophyllum commune. Acta Edulis Fungi. 11, 59–63.Google Scholar
  5. 5.
    Yamamoto Y., Kohno S., Koga H., Kakeya H., Tomono K., Kaku M., Yamazaki T., Arisawa M., Hara K. 1995. Random amplified polymorphic DNA analysis of clinically and environmentally isolated Cryptococcus neoformans in Nagasaki. J. Clin. Microbiol. 33, 3328–3332.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Li Z.L., Zhou B., Yang L.Y., Li Z.Y., Zhang Q., Chen Y.W. 2002. Improvement of extraction method of fungal DNA. J. Yunnan Univ. (Nat. Sci.). 24, 471–472.Google Scholar
  7. 7.
    Zhan Y.G., Zeng F.S. 2005. Extraction of mature birch leaves rich in polysaccharide DNA. J. Northeast For. Univ. 33, 24–25.Google Scholar
  8. 8.
    Cheng Y.J., Yi H.L., Pang X.M., Guo W.W., Deng X.X. 2001. Effective extraction of several woody fruit trees DNA. J. Huazhong Agric. Univ. 20, 481–483.Google Scholar
  9. 9.
    Liu C.H., Huang X., Xie T.N., Duan N., Xue Y.R., Zhao T.X., Lever M.A., Hinrichs K.U., Inagaki F. 2017. Exploration of cultivable fungal communities in deep coal-bearing sediments from ~1.3 to 2.5 km below the ocean floor. Environ. Microbiol. 19 (2), 803–818.CrossRefPubMedGoogle Scholar
  10. 10.
    Ma Y.P., Dai S.L. 2009. Extraction from Chrysanthemum genome DNA high salt precipitation method CTAB. Biotechnol. Bull. 7, 90–93.Google Scholar
  11. 11.
    Liu L., Zhang Y.J., Xu C.Z., Luo F. 2014. An improved CTAB method for the extraction of polysaccharides from fungi DNA. J. Chinese Biotechnol. 34, 75–79.Google Scholar
  12. 12.
    Tel-Zur N., Abbo S., Myslabodski D., Mizrahi Y. 1999. Modified CTAB procedure for DNA isolation from epiphytic cacti of the Genera hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254.CrossRefGoogle Scholar
  13. 13.
    Guo Z., Chen G., Liu L., Zeng G., Huang Z., Chen A., Hu L. 2016. Activity variation of Phanerochaete chrysosporium under nanosilver exposure by controlling of different sulfide sources. Sci. Rep. 6, 20813. doi 10.1038/srep20813CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sansinforiano M.E., Padilla J.A., Hermoso de Mendoza J., Hermoso de Mendoza M., Fernandez-Garcia J.L., Martínez-Tranćon M., Rabasco A., Parejo J.C. 1998. Rapid and easy method to extract and preserve DNA from Cryptococcus neoformans and other pathogenic yeasts. Mycoses. 41, 195–198.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhu X.F. 2010. Genetic Engineering Experiment Instruction. Higher Education Press (in Chinese).Google Scholar
  16. 16.
    Cai W.J., Xu D.B., Lan X., Xie H.H., Wei J.G. 2014. A new method for extracting genomic DNA from fungi. Agricult. Res. Appl. 3, 1–5.CrossRefGoogle Scholar
  17. 17.
    Feng J., Hwang R., Chang K.F., Hwang S.F., Stephen S., Gossen B.D., Qixing Z. 2010. An inexpensive method for extraction of genomic DNA from fungal mycelia. Can. J. Plant Pathol. 32, 396–401.CrossRefGoogle Scholar
  18. 18.
    White T.J., Bruns T.D., Lee S.B., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols. 315–322.Google Scholar
  19. 19.
    Li Z.L. 1987. Schizophyllum commune cultivation and polysaccharide determination. Mycosystema. 6, 15–20.Google Scholar
  20. 20.
    Wu G.M. 2009. Effects of yeast extract and peptone and pH on Volvariella volvacea cultivation and biological efficiency. Edible Fungi China. 28, 27–29.Google Scholar
  21. 21.
    Gong Z.Y., Yu S.F., Sun C.H., Qu L. 2003. Study the optimal concentration of glucose and peptone on the mycelium growth of P. ferulae and P. eryngii. Edible Fungi China. 22, 18–20.Google Scholar
  22. 22.
    Chen H.W. 2000. Study on the scientific expression of agar in microbial medium. Microbiol. China. 27, 384–385.Google Scholar
  23. 23.
    Moťková P., Vytřasová J. 2011. Comparison of methods for isolating fungal DNA. Czech J. Food Sci. 29, S76–S85.CrossRefGoogle Scholar
  24. 24.
    Zhang L.L., Zhang L.H., Shi J.F., Wang Y.J. 2000. Genomic DNA extraction and molecular biological analysis of fungi using benzyl chloride. J. Dalian Polytech. Univ. 19, 36–39.Google Scholar
  25. 25.
    Smith J.F., Sytsma K.J., Shoemaker J.S., Smith R.L. 1991. A qualitative comparison of total cellular DNA extraction protocols. Phytochem. Bull. 23, 2–9.Google Scholar
  26. 26.
    Syamkumar S., Mridula J., Sasikumar B. 2005. Isolation and PCR amplification of genomic DNA from dried capsules of cardamom (Elettaria cardamomum L.). Plant Mol. Biol. Rep. 23, 417a–427e.CrossRefGoogle Scholar
  27. 27.
    Abdellaoui R., Gouja H., Sayah A., Neffati M. 2011. An efficient DNA extraction method for desert Calligonum species. Biochem. Genet. 49, 695–703.CrossRefPubMedGoogle Scholar
  28. 28.
    Ibrahim R.I.H. 2011. A modified CTAB protocol for DNA extraction from young flower petals of some medicinal plant species. Geneconserve. 10 (40), 165–182.Google Scholar
  29. 29.
    Sun D., Zhao S.L., Shang Y.Z., Peng C.J., Liu H.L. 2013. Denaturation behavior of DNA in NaCl and PEG solutions. J. East. Chin. Univ. Sci. Tech. 39, 147–150.Google Scholar
  30. 30.
    Minton A.P., Wilf J. 1981. Effect of macromolecular crowding upon the structure and function of an enzyme: Glyceraldehyde-3-phosphate dehydrogenase. Biochemistry. 20, 4821–4826.CrossRefPubMedGoogle Scholar
  31. 31.
    Hammouda B. 2009. Insight into the denaturation transition of DNA. Int. J. Biol. Macromol. 45, 532–534.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • X. Huang
    • 1
  • N. Duan
    • 1
  • H. Xu
    • 1
  • T. N. Xie
    • 1
  • Y.-R. Xue
    • 1
  • C.-H. Liu
    • 1
  1. 1.State Key of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina

Personalised recommendations