Advertisement

Molecular Biology

, Volume 52, Issue 4, pp 556–569 | Cite as

Mutations in Hemagglutinin and Polymerase Alter the Virulence of Pandemic A(H1N1) Influenza Virus

  • A. S. Gambaryan
  • N. F. Lomakina
  • E. Y. Boravleva
  • L. V. Mochalova
  • G. K. Sadykova
  • A. G. Prilipov
  • T. Y. Matrosovich
  • M. N. Matrosovich
Molecular Cell Biology
  • 18 Downloads

Abstract

To study the pathogenicity factors of the pandemic A(H1N1) influenza virus, a number of mutant variants of the A/Hamburg/5/2009 (H1N1)pdm09 strain were obtained through passage in chicken embryos, mouse lungs, and MDCK cell culture. After 17 lung-to-lung passages of the A/Hamburg/5/2009 in mice, the minimum lethal dose of the derived variant decreased by five orders of magnitude compared to that of the parental virus. This variant differed from the original virus by nine amino acid residues in the following viral proteins: hemagglutinin (HA), neuraminidase (NA), and components of the polymerase complex. Additional passaging of the intermediate variants and cloning made it possible to obtain pairs of strains that differed by a single amino acid substitution. Comparative analysis of replicative activity, receptor specificity, and virulence of these variants revealed two mechanisms responsible for increased pathogenicity of the virus for mice. Thus, (1) substitutions in HA (Asp225Gly or Gln226Arg) and compensatory mutation decreasing the charge of HA (Lys123Asn, Lys157Asn, Gly158Glu, Asn159Asp, or Lys212Met) altered viral receptor-binding specificity and restored the functional balance between HA and NA; (2) Phe35Leu substitution in the PA protein increased viral polymerase activity.

Keywords

pandemic A(H1N1) influenza virus pathogenicity factors 

Abbreviations

aa residue

amino acid residue

CE

chicken embryos

HA

hemagglutinin (the numbering of amino acids corresponds to H3 HA)

ID50

50% mouse infectious dose

LD50

50% mouse lethal dose

M

matrix protein M1

MDCK

Madin-Darby canine kidney cells

NA

neuraminidase

NP

nucleoprotein

NS

nonstructural protein

TCID50

50% tissue culture infectious dose

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garten R.J., Davis C.T., Russell C.A., et al. 2009. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 325, 197–201. doi doi 10.1126/science.1176225CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen W., Calvo P.A., Malide D., Gibbs J., Schubert U., Bacik I., Basta S., O’ Neill R., Schickli J., Palese P., Henklein P., Bennink J.R., Yewdell J.W. 2001. A novel influenza A virus mitochondrial protein that induces cell death. Nat. Med. 7, 1306–1312.CrossRefPubMedGoogle Scholar
  3. 3.
    Subbarao E.K., London W., Murphy B.R. 1993. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 67, 1761–1764.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Hatta M., Gao P., Halfmann P., Kawaoka Y. 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 293, 1840–1842.CrossRefPubMedGoogle Scholar
  5. 5.
    Bussey K.A., Desmet E.A., Mattiacio J.L., Hamilton A., Bradel-Tretheway B., Bussey H.E., Kim B., Dewhurst S., Takimoto T. 2011. PA residues in the 2009 H1N1 pandemic influenza virus enhance avian influenza virus polymerase activity in mammalian cells. J. Virol. 85, 7020–7028.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Farooqui A., Leon A.J., Lei Y., Wang P., Huang J., Tenorio R., Dong W., Rubino S., Lin J., Li G., Zhao Z., Kelvin D.J. 2012. Heterogeneous virulence of pandemic 2009 influenza H1N1 virus in mice. Virol. J. 9, 104.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang Y., Zhang Q., Gao Y., He X., Kong H., Jiang Y., Guan Y., Xia X., Shu Y., Kawaoka Y., Bu Z., Chen H. 2012. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J. Virol. 86, 9666–9674.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu Y., Qin K., Meng G., Zhang J., Zhou J., Zhao G., Luo M, Zheng X. 2013. Structural and functional characterization of K339T substitution identified in the PB2 cap-binding pocket of influenza A virus. J. Biol. Chem. 288, 11013–11023.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Song M.S., Pascua P.N. Q., Choi Y.K. 2011. Virulence of pandemic (H1N1) 2009 influenza A polymerase reassortant viruses. Virulence. 5, 422–426.CrossRefGoogle Scholar
  10. 10.
    Ozawa M., Basnet S., Burley L.M., Neumann G., Hatta M., Kawaoka Y. 2011. Impact of amino acid mutations in PB2, PB1-F2, and NS1 on the replication and pathogenicity of pandemic (H1N1) 2009 influenza viruses. J. Virol. 85, 4596–4601.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hai R., Schmolke M., Varga Z.T., Manicassamy B., Wang T.T., Belser J.A., Pearce M.B., García-Sastre A., Tumpey T.M., Palese P. 2010. PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J. Virol. 84, 4442–4450.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ilyushina N.A., Khalenkov A.M., Seiler J.P., Forrest H.L., Bovin N.V., Marjuki H, Barman S., Webster R.G., Webby R.J. 2010. Adaptation of pandemic H1N1 influenza viruses in mice. J. Virol. 84, 8607–8616.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Akira A., Hasegawa H., Obuchi M., Odagiri T., Ujike M., Shirakura M., Nobusawa E., Tashiro M., Asanuma H. 2015. Host adaptation and the alteration of viral properties of the first influenza A/H1N1pdm09 virus isolated in Japan. PLoS One. 10, e0130208.CrossRefGoogle Scholar
  14. 14.
    Ducatez M.F., Ilyushina N.A., Fabrizio T.P., Rehg J.E., Bovin N.V., Webster R.G., Webby R.J. 2012. Both influenza hemagglutinin and polymerase acidic genes are important for delayed pandemic 2009 H1N1 virus clearance in the ferret model. Virology. 432, 389–393.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Seyer R., Hrincius E.R., Ritzel D., Abt M., Mellmann A., Marjuki H., Kühn J., Wolff T., Ludwig S., Ehrhardt C. 2012. Synergistic adaptive mutations in the hemagglutinin and polymerase acidic protein lead to increased virulence of pandemic 2009 H1N1 influenza A virus in mice. J. Infect. Dis. 205, 262–271.CrossRefPubMedGoogle Scholar
  16. 16.
    Chen H. L., Wen X., To K.K.W., Wang P., Tse H., Chan J.F.W., Tsoi H.W., Fung K.S.C., Tse C.W.S., Lee R.A., Chan K.H., Yuen K.Y. 2010. Quasispecies of the D225G substitution in the hemagglutinin of pandemic influenza A(H1N1) 2009 virus from patients with severe disease in Hong Kong, China. J. Infect. Dis. 201, 1517–1521.CrossRefPubMedGoogle Scholar
  17. 17.
    Mak G.C., Au K.W., Tai L.S., Chuang K.C., Cheng K.C., Shiu T.C., Lim W. 2010. Association of D222G substitution in haemagglutinin of 2009 pandemic influenza A(H1N1) with severe disease. Euro Surveill. 15, pii: 19534.Google Scholar
  18. 18.
    Melidou A., Gioula G., Exindari M., Chatzidimitriou D., Diza E., Malisiovas N. 2010. Molecular and phylogenetic analysis of the haemagglutinin gene of pandemic influenza H1N1 2009 viruses associated with severe and fatal infections. Virus Res. 151, 192–199.CrossRefPubMedGoogle Scholar
  19. 19.
    Lvov D.K., Yashkulov K.B., Prilipov A.G., et al. 2010. Detection of amino acid substitutions of asparaginic acid for glycine and asparagine at the receptor-binding site of hemagglutinin in the variants of pandemic influenza A/H1N1 virus from patients with fatal outcome and moderate form of the disease. Vopr. Virusol. 55 (3), 15–18.Google Scholar
  20. 20.
    Krasnoslobodtsev K.G., Lvov D.K., Alkhovsky S.V., Burtseva E.I., Fedyakina I.T., Kolobukhina L.V., Kirillova E.S., Trushakova S.V., Oskerko T.A., Shchelkanov M.Yu., Deryabin P.G. 2016. Amino acid polymorphism at residue 222 of the receptor-binding site of the hemagglutinin of the pandemic influenza A(H1N1)pdm09 from patients with lethal virus pneumonia in 2012–2014. Vopr. Virusol. 61, 166–177.Google Scholar
  21. 21.
    Drews S.J., Pabbaraju K., Wong S., Tokaryk K.L., May-Hadford J., Lee B., Tellier R., Louie M. 2011. Surveillance of autopsy cases for D222G substitutions in haemagglutinin of the pandemic (H1N1) 2009 virus in Alberta, Canada. Clin. Microbiol. Infect. 17, 582–584.CrossRefPubMedGoogle Scholar
  22. 22.
    Ledesma J., Pozo F., Pérez Ruiz M., Navarro J.M., Piñeiro L., Montes M., Pérez Castro S., Suárez Fernández J., García Costa J., Fernández M., Galán J.C., Cuevas M.T., Casas I., Pérez Breña P. 2011. Substitutions in position 222 of haemagglutinin of pandemic influenza A(H1N1) 2009 viruses in Spain. J. Clin. Virol. 51, 75–78.CrossRefPubMedGoogle Scholar
  23. 23.
    Puzelli S., Facchini M., De Marco M.A., Palmieri A., Spagnolo D., Boros S., Corcioli F., Trotta D., Bagnarelli P., Azzi A., Cassone A., Rezza G., Pompa M.G., Oleari F., Donatelli I. 2010. Influnet Surveillance Group for Pandemic A(H1N1) 2009 Influenza Virus in Italy. Molecular surveillance of pandemic influenza A(H1N1) viruses circulating in Italy from May 2009 to February 2010: Association between haemagglutinin mutations and clinical outcome. Euro Surveill. 15, pii: 19696.Google Scholar
  24. 24.
    Vazquez-Perez J.A., Isa P., Kobasa D., Ormsby C.E., Ramírez-Gonzalez J.E., Romero-Rodríguez D.P., Ranadheera C., Li Y., Bastien N., Embury-Hyatt C., González-Duran E., Barrera-Badillo G., Ablanedo-Terrazas Y., Sevilla-Reyes E.E., Escalera-Zamudio M., Cobián-Güemes A.G., et al. 2013. A(H1N1)pdm09 HA D222 variants associated with severity and mortality in patients during a second wave in Mexico. Virol. J. 10, 41.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Abed Y., Pizzorno A., Hamelin M.E., Leung A., Joubert P., Couture C., Kobasa D., Boivin G. 2011. The 2009 pandemic H1N1 D222G hemagglutinin mutation alters receptor specificity and increases virulence in mice but not in ferrets. J. Infect. Dis. 204, 1008–1016.CrossRefPubMedGoogle Scholar
  26. 26.
    Chutinimitkul S., Herfst S., Steel J., Lowen A.C., Ye J., van Riel D., Schrauwen E.J., Bestebroer T.M., Koel B., Burke D.F., Sutherland-Cash K.H., Whittleston C.S., Russell C.A., Wales D.J., Smith D.J., et al. 2010. Virulence-associated substitution D222G in the hemagglutinin of 2009 pandemic influenza A(H1N1) virus affects receptor binding. J. Virol. 84, 11802–11813.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Belser J.A., Jayaraman A., Raman R., Pappas C., Zeng H., Cox N.J., Katz J.M., Sasisekharan R., Tumpey T.M. 2011. Effect of D222G mutation in the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. PLoS One. 6, e25091.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Casalegno J.S., Ferraris O., Escuret V., Bouscambert M., Bergeron C., Linès L., Excoffier T., Valette M., Frobert E., Pillet S., Pozzetto B., Lina B., Ottmann M. 2014. Functional balance between the hemagglutinin and neuraminidase of influenza A(H1N1)pdm09 HA D222 variants. PLoS One. 9, e104009.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kim J.I., Lee I., Park S., Lee S., Hwang M.W., Bae J.Y., Heo J., Kim D., Jang S.I., Song J.W., Park M.S. 2014. Effects of a hemagglutinin D222G substitution on the pathogenicity of 2009 influenza A(H1N1) virus in mice. Arch. Virol. 159, 2559–2565.CrossRefPubMedGoogle Scholar
  30. 30.
    Matrosovich M., Tuzikov A., Bovin N., Gambaryan A., Klimov A., Castrucci M.R., Donatelli I., Kawaoka Y. 2000. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 74, 8502–8512.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Meunier I., Embury-Hyatt C., Stebner S., Gray M., Bastien N., Li Y., Plummer F., Kobinger G.P., von Messling V. 2012. Virulence differences of closely related pandemic 2009 H1N1 isolates correlate with increased inflammatory responses in ferrets. Virology. 422, 125–131CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu W., Zhu Y., Qin K., Yu Z., Gao R., Yu H., Zhou J., Shu Y. 2012. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice. PLoS One. 7, e33383.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu Q., Huang J., Chen Y., Chen H., Li Q., He L., Hao X., Liu J., Gu M., Hu J., Wang X., Hu S., Liu X., Liu X. 2015. Virulence determinants in the PB2 gene of a mouse-adapted H9N2 virus. J. Virol. 89, 877–882.CrossRefPubMedGoogle Scholar
  34. 34.
    Nieto A., Pozo F., Vidal-García M., Omeñaca M., Casas I., Falcón A. 2017. Identification of rare PB2-D701N mutation from a patient with severe influenza: contribution of the PB2-D701N mutation to the pathogenicity of human influenza. Front. Microbiol. 8, 575. doi doi 10.3389/fmicb.2017.00575CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yu Z., Cheng K., Sun W., Zhang X., Li Y., Wang T., Wang H., Zhang Q., Xin Y., Xue L., Zhang K., Huang J., Yang S., Qin C., Wilker P.R., et al. 2015. A PB1 T296R substitution enhance polymerase activity and confer a virulent phenotype to a 2009 pandemic H1N1 influenza virus in mice. Virology. 486, 180–186.CrossRefPubMedGoogle Scholar
  36. 36.
    Obuchi M., Toda S., Tsukagoshi H., Oogane T., Abiko C., Funatogawa K., Mizuta K., Shirabe K., Kozawa K., Noda M., Kimura H., Tashiro M. 2012. Molecular analysis of genome of the pandemic influenza A(H1N1) 2009 virus associated with fatal infections in Gunma, Tochigi, Yamagata, and Yamaguchi prefectures in Japan during the first pandemic wave. Jpn. J. Infect. Dis. 65, 363–367.CrossRefPubMedGoogle Scholar
  37. 37.
    Mehle A., Dugan V.G., Taubenberger J.K., Doudna J.A. 2012. Reassortment and mutation of the avian influenza virus polymerase PAsubunit overcome species barriers. J. Virol. 86, 1750–1757.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Otte A., Sauter M., Daxer M.A., McHardy A.C., Klingel K., Gabriel G. 2015. Adaptive mutations that occurred during circulation in humans of H1N1 influenza virus in the 2009 pandemic enhance virulence in mice. J. Virol. 89, 7329–7337.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang W., Lu J., Cotter C.R., Wen K., Jin H., Chen Z. 2013. Identification of critical residues in the hemagglutinin and neuraminidase of influenza virus H1N1pdm for vaccine virus replication in embryonated chicken eggs. J. Virol. 87, 4642–4649.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zheng B., Chan K.H., Zhang A.J., Zhou J., Chan C.C., Poon V.K., Zhang K., Leung V.H., Jin D.Y., Woo P.C., Chan J.F., To K.K., Chen H., Yuen K.Y. 2010. D225G mutation in hemagglutinin of pandemic influenza H1N1 (2009) virus enhances virulence in mice. Exp. Biol. Med. Maywood. 235, 981–988. doi 10.1258/ebm.2010.010071CrossRefPubMedGoogle Scholar
  41. 41.
    Antón A., Pozo F., Niubó J., Casas I., Pumarola T. 2012. Influenza A (H1N1)pdm09 virus: Viral characteristics and genetic evolution. Enferm. Infecc. Microbiol. Clin. Suppl. 4, 10–17. doi 10.1016/S0213-005X(12)70099-XGoogle Scholar
  42. 42.
    Akcay Ciblak M., Hasoksuz M., Kanturvardar M., Asar S., Badur S. 2013. Molecular and serological investigations of the influenza A(H1N1) 2009 pandemic virus in Turkey. Med. Microbiol. Immunol. 202, 277–284.CrossRefPubMedGoogle Scholar
  43. 43.
    Resende P.C., Motta F.C., Oliveira Mde L., Gregianini T.S., Fernandes S.B., Cury A.L., do Carmo D. Rosa M., Souza T.M., Siqueira M.M. 2014. Polymorphisms at residue 222 of the hemagglutinin of pandemic influenza A(H1N1)pdm09: association of quasi-species to morbidity and mortality in different risk categories. PLoS One. 9, e92789.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu Y., Childs R.A., Matrosovich T., Wharton S., Palma A.S., Chai W., Daniels R., Gregory V., Uhlendorff J., Kiso M., Klenk H.D., Hay A., Feizi T., Matrosovich M. 2010. Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J. Virol. 84, 12069–12074.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chan P.K., Lee N., Joynt G.M., Choi K.W., Cheung J.L., Yeung A.C., Lam P., Wong R., Leung B.W., So H.Y., Lam W.Y., Hui D.C. 2011. Clinical and virological course of infection with haemagglutinin D222G mutant strain of 2009 pandemic influenza A(H1N1) virus. J. Clin. Virol. 50, 320–324.CrossRefPubMedGoogle Scholar
  46. 46.
    Wedde M., Wählisch S., Wolff T., Schweiger B. 2013. Predominance of HA-222D/G polymorphism in influenza A(H1N1)pdm09 viruses associated with fatal and severe outcomes recently circulating in Germany. PLoS One. 8, e57059.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Seidel N., Sauerbrei A., Wutzler P., Schmidtke M. 2014. Hemagglutinin 222D/G polymorphism facilitates fast intra-host evolution of pandemic (H1N1) 2009 influenza A viruses. PLoS One. 9, e104233.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pan D., Xue W., Wang X., Guo J., Liu H., Yao X. 2012. Molecular mechanism of the enhanced virulence of 2009 pandemic influenza A(H1N1) virus from D222G mutation in the hemagglutinin: A molecular modeling study. J. Mol. Model. 18, 4355–4366.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang W., Shi Y., Qi J., Gao F., Li Q., Fan Z., Yan J., Gao G.F. 2013. Molecular basis of the receptor binding specificity switch of the hemagglutinins from both the 1918 and 2009 pandemic influenza A viruses by a D225G substitution. J. Virol. 87, 5949–5958.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang Y., Zhang Q., Gao Y., He X., Kong H., Jiang Y., Guan Y., Xia X., Shu Y., Kawaoka Y., Bu Z., Chen H. 2012. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J. Virol. 86, 9666–9674.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhang W., Tu J., Zhao Z., Chen H., Jin M. 2012. The new temperature-sensitive mutation PA-F35S for developing recombinant avian live attenuated H5N1 influenza vaccine. Virol. J. 9, 97.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ping J., Keleta L., Forbes N.E., Dankar S., Stecho W., Tyler S., Zhou Y., Babiuk L., Weingartl H., Halpin R.A., Boyne A., Bera J., Hostetler J., Fedorova N.B., Proudfoot K., et al. 2011. Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse. PLoS One. 6, e21740.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Weis W., Brown J.H., Gusack S., Poulson J.G., Skehel J.J., Wiley D.C. 1988. Structure of the influenza virus hemagglutinin complexed with its receptor, sialic acid. Nature. 233, 426–431.CrossRefGoogle Scholar
  54. 54.
    Gambaryan A.S., Robertson J.S., Matrosovich M.N. 1999. Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology. 258, 232–239.CrossRefPubMedGoogle Scholar
  55. 55.
    Gambaryan A.S., Karasin A.I., Tuzikov A.B., Chinarev A.A., Pazynina G.V., Bovin N.V., Matrosovich M.N., Olsen C.W., Klimov A.I. 2005. Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells. Virus Res. 114, 15–22.CrossRefPubMedGoogle Scholar
  56. 56.
    Shinya K., Ebina M., Yamada S., Ono M., Kasai N., Kawaoka Y. 2006. Avian flu: influenza virus receptors in the human airway. Nature. 440, 435–436.CrossRefPubMedGoogle Scholar
  57. 57.
    Pan D., Xue W., Wang X., Guo J., Liu H., Yao X. 2012. Molecular mechanism of the enhanced virulence of 2009 pandemic influenza A(H1N1) virus from D222G mutation in the hemagglutinin: A molecular modeling study. J. Mol. Model. 18, 4355–4366.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. S. Gambaryan
    • 1
  • N. F. Lomakina
    • 1
    • 2
  • E. Y. Boravleva
    • 1
  • L. V. Mochalova
    • 3
  • G. K. Sadykova
    • 2
  • A. G. Prilipov
    • 2
  • T. Y. Matrosovich
    • 4
  • M. N. Matrosovich
    • 4
  1. 1.Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological ProductsRussian Academy of SciencesMoscowRussia
  2. 2.Gamaleya Scientific Research Institute of Epidemiology and MicrobiologyMinistry of Health of the Russian FederationMoscowRussia
  3. 3.All-Russia Institute for Scientific and Technical Information (VINITI)Russian Academy of SciencesMoscowRussia
  4. 4.Institute of VirologyPhilipps UniversityMarburgGermany

Personalised recommendations