Molecular Biology

, Volume 52, Issue 4, pp 532–542 | Cite as

Cytotoxicity of Malondialdehyde and Cytoprotective Effects of Taurine via Oxidative Stress and PGC-1α Signal Pathway in C2C12 Cells

  • J.-G. CaiEmail author
  • L.-M. Luo
  • H. Tang
  • L. Zhou
Molecular Cell Biology


One of the end-products of ROS-induced peroxidation, malondialdehyde (MDA), induces the cross-links in proteins, which leads to perturbation of the physiological functions of cells and contributes to abnormal biological regulation and various disorders. Taurine (2-aminoethanesulfonic acid, Tau) aids in adjusting normal physiological functions to confer stress resistance. The protective effects of Tau against MDA stress in vitro or in vivo were reported previously. In this study, we had investigated the protective effects of taurine on viability, oxidative stress levels and mitochondrial biogenesis in mouse muscle C2C12 cells undergoing MDA induced stress. We show that the treatment with 100 μM MDA leads to increase in cell oxidative stress levels, inhibition of mitochondrial biogenesis and the reduction of the cell survival rates. The pretreatment with 0.1 μM taurine reduced MDA-induced death rate via inhibition of oxidative stress, restoration of mitochondrial functions of the mitochondrial membrane potential (MMP) and ATP production. In MDA stress, the pre-treatment with 0.1 μM taurine leads to upregulation of the factors of mitochondrial biogenesis. These observations suggest that the cytoprotective effects of taurine may be due to an induction of mitochondrial biogenesis.


taurine malondialdehyde mouse muscle C2C12 cells mitochondrial biogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miyata T., Izuhara Y., SakaiH., Kurokawa K. 1999. Carbonyl stress: Increased carbonyl modification of tissue and cellular proteins in uremia. Perit. Dial. Int. 19 (Suppl. 2), S58–S61.PubMedGoogle Scholar
  2. 2.
    Ayala A., Muñoz M.F., Arguelles S. 2015. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 360438.Google Scholar
  3. 3.
    Cai J.G., Ye Z.C. 2012. Novel evidences: Malondialdehyde, a lipid peroxidative intermediate, modified erythrocyte membrane architectures which was inhibited by glutathione. J. Converg. Inform. Technol. 7 (14), 360–367.CrossRefGoogle Scholar
  4. 4.
    Ji L.L., Kang C., Zhang Y. 2016. Exercise-induced hormesis and skeletal muscle health. Free Radic. Biol. Med. 98, 113–122.CrossRefPubMedGoogle Scholar
  5. 5.
    Rutherford G., Manning P., Newton J.L. 2016. Understanding muscle dysfunction in chronic fatigue syndrome. J. Aging Res. 2016, 2497348. doi 10.1155/2016/2497348.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Calabrese V., Cornelius C., Stella A.M. Calabrese E.J. 2010. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes. Neurochem. Res. 35, 1880–1915.CrossRefPubMedGoogle Scholar
  7. 7.
    Bar-Or D., Bar-Or R., Rael L.T., Brody E.N. 2015. Oxidative stress in severe acute illness. Redox Biol. 4, 340–345.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Esterbauer H., Zollner H., Schaur J. 1990. Aldehydes formed by lipid peroxidation: Mechanisms of formation, occurrence, and determination, in Membrane Lipid Oxidation. Ed. C. Vigo-Pelfrey. Boca Raton, FL: CRC Press, pp. 239–268.Google Scholar
  9. 9.
    Bansal S., Siddarth M., Chawla D., Banerjee B.D., Madhu S.V., Tripathi A.K. 2012. Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro. Mol. Cell Biochem. 361 (1–2), 289–296.CrossRefPubMedGoogle Scholar
  10. 10.
    Jiang T., Sun Q., Chen S. 2016. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 147, 1–19.CrossRefPubMedGoogle Scholar
  11. 11.
    Kant M., Akis M., Calan M., Arkan T., Bayraktar F., Islekel H. 2016. Elevated urinary levels of 8-oxo-2'- deoxyguanosine, (5'R)- and (5'S)-8,5'-cyclo-2'-deoxyadenosines, and 8-iso-prostaglandin F2alpha as potential biomarkers of oxidative stress in patients with prediabetes. DNA Repair (Amst.). 48, 1–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Ryan M.T., Hoogenraad N.J. 2007. Mitochondrial–nuclear communications. Annu. Rev. Biochem. 76, 701–722.CrossRefPubMedGoogle Scholar
  13. 13.
    Aoi W., Naito Y., Yoshikawa T. 2013. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage. Free Radic. Biol. Med. 65, 1265–1272.CrossRefPubMedGoogle Scholar
  14. 14.
    Allen D.G., Lamb G.D., Westerblad H. 2008. Skeletal muscle fatigue: Cellular mechanisms. Physiol. Rev. 88 (1), 287–332.CrossRefPubMedGoogle Scholar
  15. 15.
    Moon Y., Balke J.E., Madorma D., Siegel M.P., Knowels G., Brouckaert P., Buys E.S., Marcinek D.J., Percival J.M. 2016. Nitric oxide regulates skeletal muscle fatigue, fiber type, microtubule organization, and mitochondrial ATP synthesis efficiency through cGMPdependent mechanisms. Antioxid. Redox Signal. 26 (17), 966–985.CrossRefPubMedGoogle Scholar
  16. 16.
    Nisoli E., Falcone S., Cozzi V., Palomba L., Fiorani M., Pisconti A., Brunelli S., Cardile A., Francolini M., Cantoni O., Carruba M.O., Moncada S., Clementi E. 2004. Mitochondrial biogenesis by NOyields functionally active mitochondria in mammals. Proc. Natl. Acad. Sci. U. S. A. 101 (47), 16507–16512.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kukidome D., Nishikawa T., Sonoda K., Imoto K., Fujisawa K., Yano M., Motoshima H., Taguchi T., Matsumura T., Araki E. 2006. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 55 (1), 120–127.CrossRefPubMedGoogle Scholar
  18. 18.
    Canto C., Auwerx J. 2009. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20 (2), 98–105.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Olesen J., Kiilerich K., Pilegaard H. 2010. PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 460 (1), 153–162.CrossRefPubMedGoogle Scholar
  20. 20.
    Baar K., Wende A.R., Jones T.E., Marison M., Nolte L.A., Chen M., Kelly D.P., Holloszy J.O. 2002. Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16 (14), 1879–1886.CrossRefPubMedGoogle Scholar
  21. 21.
    Chan D.C. 2006. Mitochondria: Dynamic organelles in disease, aging, and development. Cell. 125 (7), 1241–1252.CrossRefPubMedGoogle Scholar
  22. 22.
    Lawler J.M., Rodriguez D.A., Hord J.M. 2016. Mitochondria in the middle: Exercise preconditioning protection of striated muscle. J. Physiol. 594 (18), 5161–5183.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Niture S.K., Kaspar J.W., Shen J., Jaiswal A.K. 2010. Nrf2 signaling and cell survival. Toxicol. Appl. Pharmacol. 244 (1), 37–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Kaspar J.W., Niture S.K., Jaiswal A.K. 2009. Nrf2: INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 47 (9), 1304–1309.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Niture S.K., Khatri R., Jaiswal A.K. 2014. Regulation of Nrf2: An update. Free Radic. Biol. Med. 66, 36–44.CrossRefPubMedGoogle Scholar
  26. 26.
    Yang S.H., Long M., Yu L.H., Li L., Li P., Zhang Y., Guo Y., Gao F., Liu M.-D., He J.-B. 2016. Sulforaphane prevents testicular damage in kunming mice exposed to cadmium via activation of Nrf2/ARE signaling pathways. Int. J. Mol. Sci. 17 (10). pii: E1703.Google Scholar
  27. 27.
    Ahuja M., Kaidery A.N., Yang L., Yang L.H., Calingasan N., Smirnova N., Gaisin A., Gaisina I.N., Gazaryan I., Hushpulian D.M., Kaddour-Djebbar I., Bollag W.B., Morgan J.C., Ratan R.R., Starkov A.A., et al. 2016. Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- induced experimental Parkinson’s-like disease. J. Neurosci. 36 (23), 6332–6351.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Todorovic M., Wood S.A., Mellick G.D. 2016. Nrf2: a modulator of Parkinson’s disease? J. Neural Transm. (Vienna). 123 (6), 611–619.CrossRefPubMedGoogle Scholar
  29. 29.
    Prasad K.N. 2016. Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer’s disease. Mech. Ageing Dev. 153, 41–47.CrossRefPubMedGoogle Scholar
  30. 30.
    Li G., Li L., Yin D. 2005. A novel observation: Melatonin’s interaction with malondiadehyde. Neuro Endocrinol. Lett. 26 (1), 61–66.CrossRefGoogle Scholar
  31. 31.
    Aldini G., Facino R.M., Beretta G., Carini M. 2005. Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives. Biofactors. 24 (1–4), 77–87.CrossRefPubMedGoogle Scholar
  32. 32.
    Hipkiss A.R., Michaelis J., Syrris P. 1995. Non-enzymatic glycosylation of the dipeptide L-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett. 371 (1), 81–85.CrossRefPubMedGoogle Scholar
  33. 33.
    Li L., Li, G., Sheng S., Yin D. 2005. Substantial reaction between histamine and malondialdehyde: A new observation of carbonyl stress. Neuro Endocrinol. Lett. 26 (6), 799–805.PubMedGoogle Scholar
  34. 34.
    Huxtable R.J. 1992. Physiological actions of taurine. Physiol. Rev. 72 (1), 101–163.CrossRefPubMedGoogle Scholar
  35. 35.
    Cai J.G., Tang H., Zhou L., Shen W.H. 2013. The damaging mechanisms of erythrocytes in over-trained rats and the protection effect from taurine. J. Beijing Sport Univ. 36 (12), 77–81.Google Scholar
  36. 36.
    Deng Y., Wang W., Yu P., Xi Z.J., Xu L.J., Li X.L., He N.Y. 2013. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo. Nanoscale Res. Lett. 8 (1), 1–9.CrossRefGoogle Scholar
  37. 37.
    Kikugawa K., Machida Y., Kida M., Kurechi T. 1981. Study on peroxidized lipids III: Fluorescent pigments derived from the reaction of malonaldehyde and amino acids. Chem. Pharm. Bull. 29, 3003–3011.CrossRefGoogle Scholar
  38. 38.
    Cai J., Chen J., He H., Yin Z.C., Zhu Z.R., Yin D.Z. 2009. Carbonyl stress: Malondialdehyde induces damage on rat hippocampal neurons by disturbance of Ca2+ homeostasis. Cell Biol. Toxicol. 25 (5), 435–445.CrossRefPubMedGoogle Scholar
  39. 39.
    Balcerczyk A., Soszynski M., Bartosz G. 2005. On the specificity of 4-amino-5-methylamino-2',7'-difluorofluorescein as a probe for nitric oxide. Free Radic. Biol. Med. 39 (3), 327–335.CrossRefPubMedGoogle Scholar
  40. 40.
    Ozcankaya R., Delibas N. 2002. Malondialdehyde, superoxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer disease: Cross-sectional study. Croat. Med. J. 43 (1), 28–32.PubMedGoogle Scholar
  41. 41.
    Slatter D.A., Bolton C.H., Bailey A.J. 2000. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia. 43 (5), 550–557.CrossRefPubMedGoogle Scholar
  42. 42.
    Addabbo F., Ratliff B., Park H.C., Kuo M.-C., Ungvari Z., Ciszar A., Krasnikof B., Sodhi K., Zhang F., Nasjletti A., Goligorsky M.S. 2009. The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: Proteomic approach. Am. J. Pathol. 174 (1), 34–43.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Perluigi M., Coccia R., Butterfield D.A. 2012. 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: A toxic combination illuminated by redox proteomics studies. Antioxid. Redox Signal. 17 (11), 1590–1609.CrossRefGoogle Scholar
  44. 44.
    Del Rio D., Stewart A.J., Pellegrini N. 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15 (4), 316–328.CrossRefPubMedGoogle Scholar
  45. 45.
    Cheng J., Wang F., Yu D.F., Wu P.F., Chen J.G. 2011. The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/ mitochondrial dysfunction/reactive oxygen species/ MAPK pathway in neurons. Eur. J. Pharmacol. 650 (1), 184–194.CrossRefPubMedGoogle Scholar
  46. 46.
    Dawson R.Jr., Biasetti M., Messina S., Dominy J. 2002. The cytoprotective role of taurine in exerciseinduced muscle injury. Amino Acids. 22 (4), 309–324.CrossRefPubMedGoogle Scholar
  47. 47.
    Elizarova E.P., Nedosugova L.V. 1996. First experiments in taurine administration for diabetes mellitus. The effect on erythrocyte membranes. Adv. Exp. Med. Biol. 403, 583–588.CrossRefPubMedGoogle Scholar
  48. 48.
    Kumar S., Singh R.K., Bhardwaj T.R. 2017. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother. 85, 182–201.CrossRefPubMedGoogle Scholar
  49. 49.
    Bates T.E., Loesch A., Burnstock G., Clark J.B. 1996. Mitochondrial nitric oxide synthase: A ubiquitous regulator of oxidative phosphorylation? Biochem. Biophys. Res. Commun, 218 (1), 40–44.CrossRefGoogle Scholar
  50. 50.
    Collman J.P., Dey A., Decreau R.A., Yang Y., Hosseini A., Solomon E.I., Eberspacher T.A.2008. Interaction of nitric oxide with a functional model of cytochrome c oxidase. Proc. Natl. Acad. Sci. U. S. A. 105 (29), 9892–9896.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nisoli E., Tonello C., Cardile A., Cozzi V., Bracale R., Tedesco L., Falcone S., Valerio A., Cantoni O., Clementi E., Moncada S., Carruba M.O. 2005. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 310 (5746), 314–317.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang Q., Pi J., Woods C.G., Andersen M.E. 2010. A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol. Appl. Pharmacol. 244 (1), 84–97.CrossRefPubMedGoogle Scholar
  53. 53.
    Niture S.K., Khatri R., Jaiswal A.K. 2014. Nrf2 signaling and cell survival. Toxicol. Appl. Pharmacol. 244 (1), 37–42.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.School of SportsHunan University of Science and TechnologyXiangtan city, Hunan provinceChina
  2. 2.Hunan Electrical College of TechnologyXiangtan city, Hunan provinceChina

Personalised recommendations