Molecular Biology

, Volume 52, Issue 4, pp 548–555 | Cite as

Modification of Anti-Glycan IgG and IgM Profiles in Allergic Inflammation

  • V. I. ButvilovskayaEmail author
  • O. V. Smoldovskaya
  • G. U. Feyzkhanova
  • M. A. Filippova
  • L.V. Pavlushkina
  • S. A. Voloshin
  • A. Yu. Rubina
Molecular Cell Biology


Glycans and anti-glycan antibodies (AGAs) are essential for infiltration of inflammatory cells in various allergies. The glycocalyx structure of the cells is modified during disease progression, and this modification is possible to evaluate by assessment of AGAs. A printed glycan array with 55 immobilized glycans and immobilized antibodies to IgG, IgA, and IgM was used to study the changes in AGA profiles in bronchial asthma (BA). Levels of antibodies to certain glycans in BA patients statistically differed from levels in healthy donors (p < 0.0007 by the Mann–Whitney test); the glycan set included 6Su-6`-SiaLec, Sia LeX, Sia6Htype2; Tαα, Manβ1-4GlcNAc, and Manα1-4Manβ. The obtained results help to better understand the mechanisms of the cell-mediated immune response in bronchial asthma and other types of allergic reactions.


allergy bronchial asthma anti-glycan antibodies glycan array immune response siglecs galectins 



glycan-binding protein


anti-glycan antibody


class M and class G AGAs, respectively


bronchial asthma


phosphate-buffered saline


PBS supplemented with Tween 20 (washing buffer)


polyvinyl alcohol




PBS supplemented with PVA (blocking buffer)


dilution buffer


background signal

Cy5 and Cy3

cyanine dies 5 and 3, respectively




sialic acid




damage-associated molecular pattern


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asher M.I. 2013. The asthma epidemic: Global and time trends of asthma in children. In Global Atlas of Asthma. Eds. Akdis C.A., Agache I. EAACI, pp. 7–9.Google Scholar
  2. 2.
    Zureik M., Neukirch C., Leynaert B., Liard R., Bousquet J., Neukirch F. 2002. Sensitisation to airborne moulds and severity of asthma: cross sectional study from European Community respiratory health survey. Br. Med. J. 325, 411–414.CrossRefGoogle Scholar
  3. 3.
    GINA. Global Initiative for Asthma.
  4. 4.
    Kallieri M., Papaioannou A.I., Papathanasiou E., Ntontsi P., Papiris S., Loukides S. 2017. Predictors of response to therapy with omalizumab in patients with severe allergic asthma: A real life study. Postgrad. Med. 28, 1–7.Google Scholar
  5. 5.
    Arefieva A.S., Smoldovskaya O.V., Tikhonov A.A., Rubina A.Y. 2017. Allergy and autoimmunity: Molecular diagnostics, therapy, and presumable pathogenesis. Mol. Biol. (Moscow). 51, 194–204.CrossRefGoogle Scholar
  6. 6.
    Feyzkhanova G., Voloshin S., Smoldovskaya O., Arefieva A., Filippova M., Barsky V., Pavlushkina L., Butvilovskaya V., Tikhonov A., Reznikov Y., Rubina A. 2017. Development of a microarray-based method for allergen-specific IgE and IgG4 detection. Clin. Proteomics. 9, 1–13.CrossRefGoogle Scholar
  7. 7.
    Marth J.D., Grewal P.K. 2008. Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874–887.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    van Kooyk Y., Rabinovich G.A. 2008. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601.CrossRefPubMedGoogle Scholar
  9. 9.
    Johnson J.L., Jones M.B., Ryan S.O., Cobb B.A. 2013. The regulatory power of glycans and their binding partners in immunity. Trends Immunol. 34, 290–298.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kiwamoto T., Katoh T., Evans C.M., Janssen W.J., Brummet M.E., Hudson S.A., Zhu Z., Tiemeyer M., Bochner B.S. 2015. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J. Allergy Clin. Immunol. 135, 1329–1340.CrossRefPubMedGoogle Scholar
  11. 11.
    Ge X.N., Ha S.G., Greenberg Y.G., Rao A., Bastan I., Blidner A.G., Rao S.P., Rabinovich G.A., Sriramarao P. 2016. Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1. Proc. Natl. Acad. Sci. U. S. A. 113, 4837–4846.CrossRefGoogle Scholar
  12. 12.
    Scott D.W., Vallejo M.O., Patel R.P. 2013. Heterogenic endothelial responses to inflammation: Role for differential N-glycosylation and vascular bed of origin. J. Am. Heart Assoc. 2, 1–18.CrossRefGoogle Scholar
  13. 13.
    Heil M., Land W.G. 2014. Danger signals: Damagedself recognition across the tree of life. Front. Plant Sci. 5, 1–16.CrossRefGoogle Scholar
  14. 14.
    Gaudet A.D., Popovich P.G. 2014. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp. Neurol. 258, 24–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Lutz H.U., Binder C.J., Kaveri S. 2009. Naturally occurring auto-antibodies in homeostasis and disease. Trends Immunol. 30, 43–51.CrossRefPubMedGoogle Scholar
  16. 16.
    Huflejt M.E., Vuskovic M., Vasiliu D., Xu H., Obukhova P., Shilova N., Tuzikov A., Galanina O., Arun B., Lu K., Bovin N. 2009. Anti-carbohydrate antibodies of normal sera: Findings, surprises and challenges. Mol. Immunol. 46, 3037–3049.CrossRefPubMedGoogle Scholar
  17. 17.
    Bovin N.V. 2013. Natural antibodies to glycans. Biochemistry (Moscow).78, 786–797.PubMedGoogle Scholar
  18. 18.
    Ziganshina M.M., Pavlovich S.V., Bovin N.V., Sukhikh G.T. 2016. Hyaluronic acid in vascular and immune homeostasis during normal pregnancy and preeclampsia. Acta Naturae. 8, 59–71.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sukhikh G.T., Ziganshina M.M., Nizyaeva N.V., Kulikova G.V., Volkova J.S., Yarotskaya E.L., Kan N.E., Shchyogolev A.I., Tyutyunnik V.L. 2016. Differences of glycocalyx composition in the structural elements of placenta in preeclampsia. Placenta. 43, 69–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Maverakis E., Kim K., Shimoda M., Gershwin M.E., Patel F., Wilken R., Raychaudhuri S., Ruhaak L.R., Lebrilla C.B. 2015. Glycans in the immune system and the altered glycan theory of autoimmunity: A critical review. J. Autoimmun. 57, 1–13.CrossRefPubMedGoogle Scholar
  21. 21.
    Willison H.J. 2014. Glycoconjugates and neuroimmunological diseases. Adv. Neurobiol. 9, 543–66.CrossRefPubMedGoogle Scholar
  22. 22.
    Dotan N., Altstock R.T., Schwarz M., Dukler A.A. 2006. Anti-glycan antibodies as biomarkers for diagnosis and prognosis. Lupus. 15, 442–450.CrossRefPubMedGoogle Scholar
  23. 23.
    Pochechueva T., Chinarev A., Schoetzau A., Fedier A.A., Bovin N.V., Hacker N.F., Jacob F., Heinzelmann- Schwarz V. 2016. Blood plasma-derived anti-glycan antibodies to sialylated and sulfated glycans identify ovarian cancer patients. PLoS One. 11, 1–16.CrossRefGoogle Scholar
  24. 24.
    Blixt O., Head S., Mondala T., Scanlan C., Huflejt M.E., Alvarez R., Bryan M.C., Fazio F., Calarese D., Stevens J., Razi N., Stevens D.J., Skehel J.J., van Die I., Burton D.R., et al. 2004. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl. Acad. Sci. U. S. A. 101, 17033–17038.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dyukova V.I., Dementieva E.I., Zubtsov D.A., Galanina O.E., Bovin N.V., Rubina A.Yu. 2005. Hydrogel glycan microarrays. Anal. Biochem. 347, 94–105.CrossRefPubMedGoogle Scholar
  26. 26.
    Dyukova V.I., Shilova N.V., Galanina O.E., Rubina A.Y., Bovin N.V. 2006. Design of carbohydrate multiarrays. Biochim. Biophys. Acta. 1760, 603–609.CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenberga H., Drueyb K. 2016. Eosinophils, galectins, and a reason to breathe. Proc. Natl. Acad. Sci. U. S. A. 113, 9139–9141.CrossRefGoogle Scholar
  28. 28.
    Saha S., Brightling C.E. 2006. Eosinophilic airway inflammation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 1, 39–47.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Smoldovskaya O., Feyzkhanova G., Arefieva A., Voloshin S., Ivashkina O., Reznikov Y., Rubina A. 2016. Allergen extracts and recombinant proteins: Comparison of efficiency of in vitro allergy diagnostics using multiplex assay on a biological microchip. Allergy Asthma Clin. Immunol. 13, 1–5.Google Scholar
  30. 30.
    Shilova N., Navakouski M., Khasbiullina N., Blixt O., Bovin N. 2012. Printed glycan array: Antibodies as probed in undiluted serum and effects of dilution. Glycoconj. J. 29, 87–91.CrossRefPubMedGoogle Scholar
  31. 31.
    Du Prel J.-B., Röhrig B., Hommel G., Blettner M. 2010. Choosing statistical tests: Part 12 of a series on evaluation of scientific publications. Dtsch. Ärztebl. Int. 107, 343–348.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Altman D. G. 1991. Practical Statistics for Medical Research. London: Chapman and Hall.Google Scholar
  33. 33.
    McDonald J.H. 2014. Handbook of Biological Statistics. Baltimore, MD: Sparky House Publ.Google Scholar
  34. 34.
    Butvilovskaya V.I., Popletaeva S.B., Chechetkin V.R., Zubtsova Z.I., Tsybulskaya M.V., Samokhina L.O., Vinnitskii L.I., Ragimov A.A., Pozharitskaya E.I., Grigorieva G.A., Meshalkina N.Y., Golysheva S.V., Shilova N.V., Bovin N.V., Zasedatelev A.S., Rubina A.Y. 2016. Multiplex determination of serological signatures in the sera of colorectal cancer patients using hydrogel biochips. Cancer Med. 5, 1361–1372.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Matyuschenko O.V. 2011. The level of IgA, IgM, IgC in children with allergic bronchial asthma and atopic dermatitis. Vestn. Vitebsk. Gos. Med. Univ. 10, 69–75.Google Scholar
  36. 36.
    Salazar F., Sewell H.F., Shakib F., Ghaemmaghami A.M. 2013. The role of lectins in allergic 12 sensitization and allergic disease. J. Allergy Clin. Immunol. 132, 27–36.CrossRefPubMedGoogle Scholar
  37. 37.
    Demchenko A.V. 2005. Highlights in organic chemistry (strategic approach to the chemical synthesis of oligosaccharides). Lett. Org. Chem. 2, 580–589.CrossRefGoogle Scholar
  38. 38.
    Alais J., Veyrieres A. 1990. Syntheses of linear tetra-, hexa-, and octa-saccharide fragments of the i-blood group active poly-(N-acetyllactosamine) series. Blockwise methods for the 123 synthesis of repetitive oligosaccharide sequences. Carbohydr. Res. 207, 11–31.Google Scholar
  39. 39.
    Angata T. 2006. Molecular diversity and evolution of the Siglec family of cell-surface lectins. Mol. Divers. 10, 555–566.CrossRefPubMedGoogle Scholar
  40. 40.
    O’Sullivan J.A., Carroll D.J., Bochner B.S. 2017. Glycobiology of eosinophilic inflammation: Contributions of siglecs, glycans, and other glycan-binding proteins. Front Med. (Lausanne). 2, 116.CrossRefGoogle Scholar
  41. 41.
    Bochner B.S. 2009. Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin. Exp. Allergy. 39, 317–324.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kiwamoto T., Kawasaki N., Paulson J.C., Bochner B.S. 2012. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol. Ther. 135, 327–336.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Misharin A.V., Morales-Nebreda L., Mutlu G.M., Budinger G.R., Perlman H. 2013. Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am. J. Respir. Cell Mol. Biol. 49, 503–510.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kiwamoto T., Katoh T., Evans C.M., Janssen W.J., Brummet M.E., Hudson S.A., Zhu Z., Tiemeyer M., Bochner B.S. 2015. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J. Allergy Clin. Immunol. 135, 1329–1340.CrossRefPubMedGoogle Scholar
  45. 45.
    Rabinovich G.A., Toscano M.A. 2009. Turning ‘sweet’ on immunity: Galectin–glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352.CrossRefPubMedGoogle Scholar
  46. 46.
    Camby I., Le Mercier M., Lefranc F., Kiss R. 2006. Galectin-1: A small protein with major functions. Glycobiology. 16, 137–157.CrossRefGoogle Scholar
  47. 47.
    Rabinovich G.A., Croci D.O. 2012. Regulatory circuits mediated by lectin–glycan interactions in autoimmunity and cancer. Immunity. 36, 322–335.CrossRefPubMedGoogle Scholar
  48. 48.
    Sato S., St-Pierre C., Bhaumik P., Nieminen J. 2009. Galectins in innate immunity: Dual functions of host soluble beta-galactoside-binding lectins as damageassociated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol. Rev. 230, 172–187.CrossRefPubMedGoogle Scholar
  49. 49.
    Royer P.J., Emara M., Yang C., Al-Ghouleh A., Tighe P., Jones N., Sewell H.F., Shakib F., Martinez-Pomares L., Ghaemmaghami A.M. 2010. The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO activity. J. Immunol. 185, 1522–1531.CrossRefPubMedGoogle Scholar
  50. 50.
    Hsu S.C., Chen C.H., Tsai S.H., Kawasaki H., Hung C.H., Chu Y.T., Chang H.W., Zhou Y., Fu J., Plunkett B., Su S.N., Vieths S., Lee R.T., Lee Y.C., Huang S.K. 2010. Functional interaction of common allergens and a C-type lectin receptor, dendritic cell specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells. J. Biol. Chem. 285, 7903–7910.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Emara M., Royer P.J., Abbas Z., Sewell H.F., Mohamed G.G., Singh S. 2011. Recognition of the major cat allergen Fel d 1 through the cysteine-rich domain of the mannose receptor determines its allergenicity. J. Biol. Chem. 286, 13033–13040.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. I. Butvilovskaya
    • 1
    Email author
  • O. V. Smoldovskaya
    • 1
  • G. U. Feyzkhanova
    • 1
  • M. A. Filippova
    • 1
  • L.V. Pavlushkina
    • 2
  • S. A. Voloshin
    • 1
  • A. Yu. Rubina
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Filatov Moscow Pediatric Clinic no. 13Healthcare Department of MoscowMoscowRussia

Personalised recommendations